Publications by authors named "Valerio Piscopo"

Motivated by the cellular heterogeneity in complex tissues, particularly in brain and induced pluripotent stem cell (iPSC)-derived brain models, we developed a complete workflow to reproducibly characterize cell types in complex tissues. Our approach combines a flow cytometry (FC) antibody panel with our computational pipeline CelltypeR, enabling dataset aligning, unsupervised clustering optimization, cell type annotating, and statistical comparisons. Applied to human iPSC derived midbrain organoids, it successfully identified the major brain cell types.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists created a new way to grow special brain cells called microglia from a patient with a rare disease that affects their CSF1R gene.
  • The new method allowed them to produce more healthy microglia-like cells that behave more like natural brain cells, and the cells from the patient showed differences in how they work.
  • They found that the patient’s cells had problems with communication and movement, along with an increased response to inflammation, showing the impact of the faulty CSF1R gene.
View Article and Find Full Text PDF

Oligodendrocytes (OLs) are key players in the central nervous system, critical for the formation and maintenance of the myelin sheaths insulating axons, ensuring efficient neuronal communication. In the last decade, the use of human induced pluripotent stem cells (iPSCs) has become essential for recapitulating and understanding the differentiation and role of OLs in vitro. Current methods include overexpression of transcription factors for rapid OL generation, neglecting the complexity of OL lineage development.

View Article and Find Full Text PDF

Glioblastoma is the most common and deadly malignant brain cancer. We now demonstrate that loss of function of the endosomal GTPase Rab35 in human brain tumor initiating cells (BTICs) increases glioblastoma growth and decreases animal survival following BTIC implantation in mouse brains. Mechanistically, we identify that the GTPase Arf5 interacts with the guanine nucleotide exchange factor (GEF) for Rab35, DENND1/connecdenn, and allosterically enhances its GEF activity toward Rab35.

View Article and Find Full Text PDF

Glioblastoma is the most common and aggressive brain tumor, with a subpopulation of stem-like cells thought to mediate its recurring behavior and therapeutic resistance. The epithelial-mesenchymal transition (EMT) inducing factor Zeb1 was linked to tumor initiation, invasion, and resistance to therapy in glioblastoma, but how Zeb1 functions at molecular level and what genes it regulates remain poorly understood. Contrary to the common view that EMT factors act as transcriptional repressors, here we show that genome-wide binding of Zeb1 associates with both activation and repression of gene expression in glioblastoma stem-like cells.

View Article and Find Full Text PDF

Research on stem cells has developed as one of the most promising areas of neurobiology. In the beginning of the 1990s, neurogenesis in the adult brain was indisputably accepted, eliciting great research efforts. Neural stem cells in the adult mammalian brain are located in the 'neurogenic' areas of the subventricular and subgranular zones.

View Article and Find Full Text PDF