Marine heatwaves (MHWs) are increasing in frequency, duration and intensity, disrupting global marine ecosystems. While most reported impacts have been in tropical areas, New Zealand experienced its strongest and longest MHW in 2022, profoundly affecting marine sponges. Sponges are vital to rocky benthic marine communities, with their abundance influencing ecosystem functioning.
View Article and Find Full Text PDFSponges are ecologically important benthic organisms with many important functional roles. However, despite increasing global interest in the functions that sponges perform, there has been limited focus on how such functions will be impacted by different anthropogenic stressors. In this review, we describe the progress that has been made in our understanding of the functional roles of sponges over the last 15 years and consider the impacts of anthropogenic stressors on these roles.
View Article and Find Full Text PDFMarine heatwaves are increasingly subjecting organisms to unprecedented stressful conditions, but the biological consequences of these events are still poorly understood. Here we experimentally tested the presence of carryover effects of heatwave conditions on the larval microbiome, settlers growth rate and metamorphosis duration of the temperate sponge . The microbial community of adult sponges changed significantly after ten days at 21°C.
View Article and Find Full Text PDFThe ecology and function of rocky temperate mesophotic ecosystems (TMEs) remain poorly understood globally despite their widespread distribution. They typically occur at 20-150 m (the limit of photosynthesis), and on rocky substratum they support rich benthic communities and mobile fauna. We determined the distribution of rocky TMEs, their conservation status, and their most characteristic biological groups.
View Article and Find Full Text PDFCurrent rates of greenhouse gas emissions are leading to a rapid increase in global temperatures and a greater occurrence of extreme climatic events such as marine heatwaves. In this study, we assessed the effects of thermal conditions predicted to occur within the next 40 years (SSP3-7.0 scenario of IPCC, 2021) on the respiration rate, buoyant weight, morphology and recruitment of the temperate model sponge Crella incrustans.
View Article and Find Full Text PDFDespite the global focus on the occurrence of regime shifts on shallow-water tropical coral reefs over the last two decades, most of this research continues to focus on changes to algal-dominated states. Here, we review recent reports (in approximately the last decade) of regime shifts to states dominated by animal groups other than zooxanthellate Scleractinian corals. We found that while there have been new reports of regime shifts to reefs dominated by Ascidacea, Porifera, Octocorallia, Zoantharia, Actiniaria and azooxanthellate Scleractinian corals, some of these changes occurred many decades ago, but have only just been reported in the literature.
View Article and Find Full Text PDFOcean deoxygenation is one of the major consequences of climate change. In coastal waters, this process can be exacerbated by eutrophication, which is contributing to an alarming increase in the so-called 'dead zones' globally. Despite its severity, the effect of reduced dissolved oxygen has only been studied for a very limited number of organisms, compared to other climate change impacts such as ocean acidification and warming.
View Article and Find Full Text PDFTemperate Mesophotic Ecosystems (TMEs) are stable habitats, usually dominated by slow-growing, long-lived sessile invertebrates and sciaphilous algae. Organisms inhabiting TMEs can form complex three-dimensional structures and support many commercially important species. However, TMEs have been poorly studied, with little known about their vulnerability to environmental impacts.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
December 2020
Sponges are a major component of benthic ecosystems across the world and fulfil a number of important functional roles. However, despite their importance, there have been few attempts to compare sponge assemblage structure and ecological functions across large spatial scales. In this review, we examine commonalities and differences between shallow water (<100 m) sponges at bioregional (15 bioregions) and macroregional (tropical, Mediterranean, temperate, and polar) scales, to provide a more comprehensive understanding of sponge ecology.
View Article and Find Full Text PDF