Publications by authors named "Valerii Orel"

Magnetic nanocomposites (MNC) are promising theranostic platforms with tunable physicochemical properties allowing for remote drug delivery and multimodal imaging. Here, we developed doxorubicin-loaded FeO-Au MNC (DOX-MNC) using electron beam physical vapor deposition (EB-PVD) in combination with magneto-mechanochemical synthesis to assess their antitumor effect on Walker-256 carcinosarcoma under the influence of a constant magnetic (CMF) and electromagnetic field (EMF) by comparing tumor growth kinetics, magnetic resonance imaging (MRI) scans and electron spin resonance (ESR) spectra. Transmission (TEM) and scanning electron microscopy (SEM) confirmed the formation of spherical magnetite nanoparticles with a discontinuous gold coating that did not significantly affect the ferromagnetic properties of MNC, as measured by vibrating-sample magnetometry (VSM).

View Article and Find Full Text PDF

Despite efforts in osteosarcoma (OS) research, the role of inductive moderate hyperthermia (IMH) in delivering and enhancing the antitumor effect of liposomal doxorubicin formulations (LDOX) remains unresolved. This study investigated the effect of a combination treatment with LDOX and IMH on Saos-2 human OS cells. We compared cell viability using a trypan blue assay, apoptosis and reactive oxygen species (ROS) measured by flow cytometry and pro-apoptotic Bax protein expression examined by immunocytochemistry in response to IMH (42 MHz frequency, 15 W power for 30 min), LDOX (0.

View Article and Find Full Text PDF

Magnetic nanoparticles (MNs) are typically used as contrast agents for magnetic resonance imaging or as drug carriers with a remotely controlled delivery to the tumor. However, they can also potentiate the action of anticancer drugs under the influence of applied constant magnetic (CMFs) and electromagnetic fields (EMFs). This review demonstrates the role of magneto-mechanochemical effects produced by MNs alone and loaded with anticancer agents (MNCs) in response to CMFs and EMFs for modulation of tumor redox state.

View Article and Find Full Text PDF

Objective: This study aimed to determine whether texture parameters could be used in differentiation between the tumor and the peritumoral tissues based on hybrid 18F-Fluorodeoxyglucose positron emission tomography/computed tomography imaging for patients with rectal cancer.

Methods: Seven parameters, including heterogeneity, entropy, energy, skewness, kurtosis, standard deviation, and average brightness, were extracted from positron emission tomography/computed tomography scans of 22 patients (12 male and 10 female; mean age, 61 ± 2 years).

Results: The peritumoral tissue had a significantly lower value of the heterogeneity parameter (23%) than the tumor.

View Article and Find Full Text PDF

We compare the effects of an extremely low-frequency electromagnetic field (EMF) with the chemotherapeutic agent doxorubicin (DOX) on tumor growth and the hepatic redox state in Walker-256 carcinosarcoma-bearing rats. Animals were divided into five groups with one control (no tumor) and four tumor-bearing groups: no treatment, DOX, DOX combined with EMF and EMF. While DOX and DOX + EMF provided greater inhibition of tumor growth, treatment with EMF alone resulted in some level of antitumor effect ( < .

View Article and Find Full Text PDF

Although nanotechnology advances have been exploited for a myriad of purposes, including cancer diagnostics and treatment, still there is little discussion about the mechanisms of remote control. Our main aim here is to explain the possibility of a magnetic field control over magnetic nanocomplexes to improve their delivery, controlled release and antitumor activity. In doing so we considered the nonlinear dynamics of magnetomechanical and magnetochemical effects based on free radical mechanisms in cancer development for future pre-clinical studies.

View Article and Find Full Text PDF

Purpose: To evaluate the efficacy of neoadjuvant chemotherapy in combination with regional inductive moderate hyperthermia for patients with locally advanced breast cancer.

Patients And Methods: 200 patients with stage IIB-IIIA breast cancer received neoadjuvant chemotherapy (control group, n = 97) or chemotherapy combined with hyperthermia (experimental group, n = 103). Inductive hyperthermia was set at 27.

View Article and Find Full Text PDF

The biological and medical aspects of magnetochemical effects in nanotherapy of tumors remain poorly studied. The present paper investigates the influence of nonlinear magnetochemical effects of anisotropic magnetic nanodots on an animal tumor model. The magnetic properties and electron spin resonance spectra of magnetic nanodots and doxorubicin were investigated after mechano-magnetochemical synthesis.

View Article and Find Full Text PDF

The paper aims to compare zeta potentials, magnetic properties, electron spin resonance, photoluminescence (PL) spectra and antitumor effect of magneto-mechano-chemically synthesized magneto-sensitive nanocomplexes loaded with the anticancer drug doxorubicin (DOXO) during nanotherapy of Walker-256 carcinosarcoma carried out by a magnetic resonance system. Diamagnetic DOXO acquired the properties of a paramagnetic substance after synthesis. MNC comprising superparamagnetic nanoparticles (NP) and DOXO had different g-factors, zeta potentials, a lower saturation magnetic moment, area of the hysteresis loop, and a higher coercivity compared to similar MNC with ferromagnetic NP.

View Article and Find Full Text PDF

Purpose: Regional inductive moderate hyperthermia in combination with chemotherapy can improve the therapeutic efficacy in patients with breast cancer with multiple liver metastases.

Methods: The study included 103 patients with breast cancer with multiple liver metastases: 53 patients (main group) who received a combined chemotherapy (TC drug combination) and regional inductive moderate hyperthermia treatment and 50 patients (control group) who received chemotherapy (TC drug combination) alone. Regional inductive moderate hyperthermia exploited electromagnetic fields with an operating frequency of 27.

View Article and Find Full Text PDF

Modulation of reactive oxygen and nitrogen species in a tumor could be exploited for nanotherapeutic benefits. We investigate the antitumor effect in Walker-256 carcinosarcoma of magnetic nanodots composed of doxorubicin-loaded FeO nanoparticles combined with electromagnetic fields. Treatment using the magnetic nanodot with the largest hysteresis loop area (3402 erg/g) had the greatest antitumor effect with the minimum growth factor 0.

View Article and Find Full Text PDF

We present a technology and magneto-mechanical milling chamber for the magneto-mechano-chemical synthesis (MMCS) of magneto-sensitive complex nanoparticles (MNC) comprising nanoparticles Fe3O4 and anticancer drug doxorubicin (DOXO). Magnetic properties of MNC were studied with vibrating magnetometer and electron paramagnetic resonance. Under the influence of mechano-chemical and MMCS, the complex show a hysteresis curve, which is typical for soft ferromagnetic materials.

View Article and Find Full Text PDF