Nano- and microstructures based on ferrimagnets can demonstrate high efficiency and dynamics of current-induced magnetization switching combined with high stability of spin textures such as bubble domains and skyrmions, which are of practical importance for the development of spintronics and spin-orbitronics. This set of features is usually associated with magnetic momentum or angular momentum compensation states. Here, we experimentally show that the compensation state can be realized locally using nonuniform Joule heating.
View Article and Find Full Text PDFNeodymium-iron-boron magnetic oxide powders synthesized by sol-gel Pechini method were studied by using X-ray photoelectron spectroscopy (XPS) and quantum chemical modeling. The powder structure was examined by using X-ray diffraction (XRD) and modeled by using density functional theory (DFT) approximation. The electronic structures of the core and valent regions were determined experimentally by using X-ray photoelectron spectroscopy and modeled by using quantum chemical methods.
View Article and Find Full Text PDF