Large-scale, reproducible manufacturing of therapeutic cells with consistently high quality is vital for translation to clinically effective and widely accessible cell therapies. However, the biological and logistical complexity of manufacturing a living product, including challenges associated with their inherent variability and uncertainties of process parameters, currently make it difficult to achieve predictable cell-product quality. Using a degradable microscaffold-based T-cell process, we developed an artificial intelligence (AI)-driven experimental-computational platform to identify a set of critical process parameters and critical quality attributes from heterogeneous, high-dimensional, time-dependent multiomics data, measurable during early stages of manufacturing and predictive of end-of-manufacturing product quality.
View Article and Find Full Text PDF