Publications by authors named "Valerie Welty"

Background: Appropriate risk stratification of indeterminate pulmonary nodules (IPNs) is necessary to direct diagnostic evaluation. Currently available models were developed in populations with lower cancer prevalence than that seen in thoracic surgery and pulmonology clinics and usually do not allow for missing data. We updated and expanded the Thoracic Research Evaluation and Treatment (TREAT) model into a more generalized, robust approach for lung cancer prediction in patients referred for specialty evaluation.

View Article and Find Full Text PDF

Objective: Indeterminate pulmonary nodules (IPNs) represent a significant diagnostic burden in health care. We aimed to compare a combination clinical prediction model (Mayo Clinic model), fungal (histoplasmosis serology), imaging (computed tomography [CT] radiomics), and cancer (high-sensitivity cytokeratin fraction 21; hsCYFRA 21-1) biomarker approach to a validated prediction model in diagnosing lung cancer.

Methods: A prospective specimen collection, retrospective blinded evaluation study was performed in 3 independent cohorts with 6- to 30-mm IPNs (n = 281).

View Article and Find Full Text PDF

Background: Indeterminate pulmonary nodules (IPN) are a diagnostic challenge in regions where pulmonary fungal disease and smoking prevalence are high. We aimed to determine the impact of a combined fungal and imaging biomarker approach compared with a validated prediction model (Mayo) to rule out benign disease and diagnose lung cancer.

Methods: Adults ages 40 to 90 years with 6-30 mm IPNs were included from four sites.

View Article and Find Full Text PDF

Increasing reliance on electronic medical records at large medical centers provides unique opportunities to perform population level analyses exploring disease progression and etiology. The massive accumulation of diagnostic, procedure, and laboratory codes in one place has enabled the exploration of co-occurring conditions, their risk factors, and potential prognostic factors. While most of the readily identifiable associations in medical records are (now) well known to the scientific community, there is no doubt many more relationships are still to be uncovered in EMR data.

View Article and Find Full Text PDF