Publications by authors named "Valerie Simonet"

The outer membrane of Gram-negative bacteria contains porins, large pore-forming proteins which allow the traffic of hydrophilic compounds between the external medium and the periplasm. The oral mode of infection of Vibrio cholerae, the agent of cholera, implies that the bacteria must adapt to severe changes in the environment, such as acidic pH and the presence of bile. Because of their localization and the regulation of their expression in response to these external factors, the OmpU and OmpT porins of V.

View Article and Find Full Text PDF

General-diffusion porins form large beta-barrel channels that control the permeability of the outer membrane of gram-negative bacteria to nutrients, some antibiotics, and external signals. Here, we have analyzed the effects of mutations in the OmpU porin of Vibrio cholerae at conserved residues that are known to affect pore properties in the Escherichia coli porins OmpF and OmpC. Various phenotypes were investigated, including sensitivity to beta-lactam antibiotics, growth on large sugars, and sensitivity to and biofilm induction by sodium deoxycholate, a major bile component that acts as an external signal for multiple cellular responses of this intestinal pathogen.

View Article and Find Full Text PDF

Leuconostoc mesenteroides Y105 and L. mesenteroides FR52 produce both mesentericin Y105 and B105, in equal amounts. The mesentericin operons of L.

View Article and Find Full Text PDF

The L3 loop is an important feature of the OmpF porin structure, contributing to both channel size and electrostatic properties. Colicins A and N, spermine, and antibiotics that use OmpF to penetrate the cell, were used to investigate the structure-function relationships of L3. Spermine was found to protect efficiently cells expressing wild-type OmpF from colicin action.

View Article and Find Full Text PDF

Numerous environmental signals regulate the production of virulence factors and the composition of the outer membrane of Vibrio cholerae. In particular, bile promotes the ToxR-dependent expression of the porin OmpU. Strains expressing solely OmpU are more resistant to bile, are better able to colonize the intestine, and produce more cholera toxin than strains expressing solely the OmpT porin.

View Article and Find Full Text PDF

The Escherichia coli OmpF pore is governed by an internal constriction consisting of the negatively charged loop 3 folded into the lumen and the positively charged barrel wall located on the opposite side across the pore, 'anti-loop 3'. To investigate the role of anti-loop 3 in solute diffusion, four site-directed mutations, K16A, K16D, R132A and R132D, were introduced into this eyelet region. The mutant porins were expressed efficiently and inserted into the outer membrane, and the thermal stabilities of the resulting trimers were determined.

View Article and Find Full Text PDF