Chronic obstructive pulmonary disease (COPD) is a clinical entity of increasing significance. COPD involves abnormalities of the airways and, in emphysema, parenchymal pulmonary destruction. Cardiovascular disease has emerged as a significant comorbidity to COPD.
View Article and Find Full Text PDFBackground: Duchenne muscular dystrophy is associated with progressive deterioration in left ventricular (LV) function. The golden retriever muscular dystrophy (GRMD) dog model recapitulates the pathology and clinical manifestations of Duchenne muscular dystrophy. Importantly, they develop progressive LV dysfunction starting at early age.
View Article and Find Full Text PDFContext: Duchenne muscular dystrophy (DMD) is associated with a progressive alteration in cardiac function.
Objective: The aim of this study was to detect early cardiac dysfunction using the high sensitive two-dimensional speckle-tracking echocardiography (2D strain) in mdx mouse model and to investigate the potential preventive effects of the S107 ryanodine receptor (RyR2) stabilizer on early onset of DMD-related cardiomyopathy.
Methods And Results: Conventional echocardiography and global and segmental left ventricle (LV) 2D strains were assessed in male mdx mice and control C57/BL10 mice from 2 to 12 months of age.
Duchenne muscular dystrophy (DMD) is a devastating condition shortening the lifespan of young men. DMD patients suffer from age-related dilated cardiomyopathy (DCM) that leads to heart failure. Several molecular mechanisms leading to cardiomyocyte death in DMD have been described.
View Article and Find Full Text PDFNumerous protocols of cardiac differentiation have been established by essentially focusing on specific growth factors on human pluripotent stem cell (hPSC) differentiation efficiency. However, the optimal environmental factors to obtain cardiac myocytes in network are still unclear. The mesoderm germ layer differentiation is known to be enhanced by low oxygen exposure.
View Article and Find Full Text PDFThe prevalence of metabolic syndrome (MetS), elevating cardiovascular risks, is increasing worldwide, with no available global therapeutic options. The intake of plain, mineral or biocompatible modified waters was shown to prevent some MetS features. This study was designed to analyze, in mice fed a high fat and sucrose diet (HFSD), the effects on MetS features of the daily intake of a reverse osmosed, weakly remineralized, water (OW) and of an OW dynamized by a physical processing (ODW), compared to tap water (TW).
View Article and Find Full Text PDFThe mechanical and cellular relationships between systole and diastole during left ventricular (LV) dysfunction remain to be established. LV contraction-relaxation coupling was examined during LV hypertrophy induced by chronic hypertension. Chronically instrumented pigs received angiotensin II infusion for4weeks to induce chronic hypertension (133 ± 7 mmHg vs 98 ± 5 mmHg for mean arterial pressure at Day 28 vs 0, respectively) and LV hypertrophy.
View Article and Find Full Text PDFAim: Duchenne Muscular Dystrophy (DMD) is associated with progressive depressed left ventricular (LV) function. However, DMD effects on myofilament structure and function are poorly understood. Golden Retriever Muscular Dystrophy (GRMD) is a dog model of DMD recapitulating the human form of DMD.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
September 2017
Besides its role in calcium (Ca) homeostasis, the sarco-endoplamic reticulum (SR/ER) controls protein folding and is tethered to mitochondria. Under pathophysiological conditions the unfolded protein response (UPR) is associated with disturbance in SR/ER-mitochondria crosstalk. Here, we investigated whether ER stress altered SR/ER-mitochondria links, Ca handling and muscle damage in WT (Wild Type) and mdx mice, the murine model of Duchenne Muscular Dystrophy (DMD).
View Article and Find Full Text PDFRespiratory muscle contractile inactivity during mechanical ventilation (MV) induces diaphragm muscle weakness, a condition referred to as ventilator-induced diaphragmatic dysfunction (VIDD). Although VIDD pathophysiological mechanisms are still not fully understood, it has been recently suggested that remodeling of the sarcoplasmic reticulum (SR) calcium release channel/ryanodine receptors (RyR1) in the diaphragm is a proximal mechanism of VIDD. Here, we used piglets, a large animal model of VIDD that is more relevant to human pathophysiology, to determine whether RyR1 alterations are observed in the presence of diaphragm weakness.
View Article and Find Full Text PDFAcute myocardial infarction leads to an increase in oxidative stress and lipid peroxidation. 4(RS)-4-F-Neuroprostane (4-F-NeuroP) is a mediator produced by non-enzymatic free radical peroxidation of the cardioprotective polyunsaturated fatty acid, docosahexaenoic acid (DHA). In this study, we investigated whether intra-cardiac delivery of 4-F-NeuroP (0.
View Article and Find Full Text PDFBackground: Controlled mechanical ventilation is associated with ventilator-induced diaphragmatic dysfunction, which impedes weaning from mechanical ventilation. To design future clinical trials in humans, a better understanding of the molecular mechanisms using knockout models, which exist only in the mouse, is needed. The aims of this study were to ascertain the feasibility of developing a murine model of ventilator-induced diaphragmatic dysfunction and to determine whether atrophy, sarcolemmal injury, and the main proteolysis systems are activated under these conditions.
View Article and Find Full Text PDFRationale: Diaphragmatic function is a major determinant of the ability to successfully wean patients from mechanical ventilation (MV). Paradoxically, MV itself results in a rapid loss of diaphragmatic strength in animals. However, very little is known about the time course or mechanistic basis for such a phenomenon in humans.
View Article and Find Full Text PDF