Publications by authors named "Valerie P Pollock"

Calcium signaling is an important mediator of neuropeptide-stimulated fluid transport by Drosophila Malpighian (renal) tubules. We demonstrate the first epithelial role, in vivo, for members of the TRP family of calcium channels. RT-PCR revealed expression of trp, trpl, and trpgamma in tubules.

View Article and Find Full Text PDF

In D. melanogaster Malpighian (renal) tubules, the capa peptides stimulate production of nitric oxide (NO) and guanosine 3', 5'-cyclic monophosphate (cGMP), resulting in increased fluid transport. The roles of NO synthase (NOS), NO and cGMP in capa peptide signalling were tested in several other insect species of medical relevance within the Diptera (Aedes aegypti, Anopheles stephensi and Glossina morsitans) and in one orthopteran out-group, Schistocerca gregaria.

View Article and Find Full Text PDF

Malpighian (renal) tubules are key components of the insect osmoregulatory system and show correspondingly great diversity in both number and length. Recently, the organisation of the Drosophila melanogaster tubule has been elucidated by enhancer trapping, and an array for functional properties has been shown to align with the functional domains. In Drosophila, there is a lower tubule domain, which coincides with expression of alkaline phosphatase and delineates the absorptive region of the tubule.

View Article and Find Full Text PDF

Mutants of norpA, encoding phospholipase C beta (PLC beta), and itpr, encoding inositol (1,4,5)-trisphosphate receptor (IP(3)R), both attenuate response to diuretic peptides of Drosophila melanogaster renal (Malpighian) tubules. Intact tubules from norpA mutants severely reduced diuresis stimulated by the principal cell- and stellate cell-specific neuropeptides, CAP(2b) and Drosophila leucokinin (Drosokinin), respectively, suggesting a role for PLC beta in both these cell types. Measurement of IP(3) production in wild-type tubules and in Drosokinin-receptor-transfected S2 cells stimulated with CAP(2b) and Drosokinin, respectively, confirmed that both neuropeptides elevate IP(3) levels.

View Article and Find Full Text PDF

A Drosophila gene (capability, capa) at 99D on chromosome 3R potentially encodes three neuropeptides: GANMGLYAFPRV-amide (capa-1), ASGLVAFPRV-amide (capa-2), and TGPSASSGLWGPRL-amide (capa-3). Capa-1 and capa-2 are related to the lepidopteran hormone cardioacceleratory peptide 2b, while capa-3 is a novel member of the pheromone biosynthesis-activating neuropeptide/diapause hormone/pyrokinin family. By immunocytochemistry, we identified four pairs of neuroendocrine cells likely to release the capa peptides into the hemolymph: one pair in the subesophageal ganglion and the other three in the abdominal neuromeres.

View Article and Find Full Text PDF