Publications by authors named "Valerie Navarro"

The sodium/iodide symporter is an intrinsic membrane protein that actively transports iodide into thyroid follicular cells. It is a key element in thyroid hormone biosynthesis and in the radiotherapy of thyroid tumours and their metastases. Sodium/iodide symporter is a very hydrophobic protein that belongs to the family of sodium/solute symporters.

View Article and Find Full Text PDF

Objective: The active transport of iodide into thyroid cells is mediated by the Na(+)/I(-) symporter (NIS) located in the basolateral membrane. Strong intracellular staining with anti-NIS antibodies has been reported in thyroid and breast cancers. Our initial objective was to screen tumour samples for intracellular NIS staining and then to study the mechanisms underlying the altered subcellular localization of the transporters.

View Article and Find Full Text PDF

The active transport of iodide from the bloodstream into thyroid follicular cells is mediated by the Na+/I- symporter (NIS). We studied mouse NIS (mNIS) and found that it catalyzes iodide transport into transfected cells more efficiently than human NIS (hNIS). To further characterize this difference, we compared (125)I uptake in the transiently transfected human embryonic kidney (HEK) 293 cells.

View Article and Find Full Text PDF

In this study, we have investigated the involvement of the internalization process induced by neurotensin (NT) on MAP kinases Erk1/2 activation, inositol phosphates (IP) accumulation and cell growth in the human colonic cancer cell line HT29. Reversible blocking of NT/neurotensin receptor (NTR) complex endocytosis by hyperosmolar sucrose totally abolished both the phosphorylation of the MAP kinases Erk1/2 and the [3H]-thymidine incorporation induced by the peptide. By contrast, NT-evoked IP formation was not affected by sucrose treatment.

View Article and Find Full Text PDF

The neurotensin (NT) receptor-3/sortilin (NTR3) belongs to the new receptor family of VPS10P domain containing receptors. The NTR3 is expressed in all cancer cells on which NT activates cell growth and its cellular location is mainly intracellular within the endoplasmic reticulum and the trans-Golgi network. However, the NTR3 is also present at the cell surface of the HT29 cell line from which it is released by a mechanism activated by phorbol 12-myristate 13-acetate (PMA).

View Article and Find Full Text PDF

Background & Aims: The neuropeptide neurotensin (NT) exerts its intracellular effect by interacting with 3 different receptors. Two of these receptors (NTR1 and NTR2) belong to the G protein-coupled receptor family, whereas the third one (NTR3) is a type I receptor with a single transmembrane domain. We recently showed that the 2 structurally different receptors NTR1 and NTR3 were coexpressed in several human cancer cells on which NT exerts proliferative effects.

View Article and Find Full Text PDF