Objective: To investigate the direct effect of onabotulinumtoxinA (OnaBotA) on bladder afferent nerve activity and release of ATP and acetylcholine (ACh) from the urothelium.
Materials And Methods: Bladder afferent nerve activity was recorded using an in vitro mouse preparation enabling simultaneous recordings of afferent nerve firing and intravesical pressure during bladder distension. Intraluminal and extraluminal ATP, ACh, and nitric oxide (NO) release were measured using the luciferin-luciferase and Amplex(®) Red assays (Molecular Probes, Carlsbad, CA, USA), and fluorometric assay kit, respectively.
Purpose Of Review: Lower urinary tract disorders such as overactive bladder syndrome (OABS) and interstitial cystitis/painful bladder syndrome (IC/PBS) are debilitating conditions with serious adverse effects on quality of life. Common to both OABS and IC/PBS are the sensory symptoms of urgency and frequency, implicating the afferent system in the aetiology of these disorders. Thus, understanding the role that afferent pathways play in the function of the lower urinary tract is the focus of much current research.
View Article and Find Full Text PDFFacilitative UT-A urea transporters play a central role in the urinary concentrating mechanism. There are three major UT-A isoforms found in the mouse kidney: mUT-A1, mUT-A2, and mUT-A3. The major aim of this study was to identify the location and function of mUT-A3.
View Article and Find Full Text PDF