Publications by authors named "Valerie Hilgers"

In the nervous system, alternative RNA processing is particularly prevalent, which results in the expression of thousands of transcript variants found in no other tissue. Neuron-specific RNA-binding proteins co-transcriptionally regulate alternative splicing, alternative polyadenylation, and RNA editing, thereby shaping the RNA identity of nervous system cells. Recent evidence suggests that interactions between RNA-binding proteins and cis-regulatory elements such as promoters and enhancers play a role in the determination of neuron-specific expression profiles.

View Article and Find Full Text PDF

Alternative transcription start site usage (ATSS) is a widespread regulatory strategy that enables genes to choose between multiple genomic loci for initiating transcription. This mechanism is tightly controlled during development and is often altered in disease states. In this review, we examine the growing evidence highlighting a role for transcription start sites (TSSs) in the regulation of mRNA isoform selection during and after transcription.

View Article and Find Full Text PDF

We present a detailed protocol for sequencing full-length mRNA isoforms using the Oxford nanopore long-read sequencing technology. We describe steps for poly(A) RNA isolation, library preparation, and cDNA size selection. We then detail procedures for sequencing and processing and a computational framework to identify exon couplings and assign mRNA 5' ends and 3' ends to each other.

View Article and Find Full Text PDF

The generation of distinct messenger RNA isoforms through alternative RNA processing modulates the expression and function of genes, often in a cell-type-specific manner. Here, we assess the regulatory relationships between transcription initiation, alternative splicing, and 3' end site selection. Applying long-read sequencing to accurately represent even the longest transcripts from end to end, we quantify mRNA isoforms in Drosophila tissues, including the transcriptionally complex nervous system.

View Article and Find Full Text PDF

Cell-type-specific gene regulatory programs are essential for cell differentiation and function. In animal neurons, the highly conserved ELAV/Hu family of proteins promotes alternative splicing and polyadenylation of mRNA precursors to create unique neuronal transcript isoforms. Here, we assess transcriptome profiles and neurogenesis success in Drosophila models engineered to express differing levels of ELAV activity in the course of development.

View Article and Find Full Text PDF

RNA binding proteins and messenger RNAs (mRNAs) assemble into ribonucleoprotein granules that regulate mRNA trafficking, local translation, and turnover. The dysregulation of RNA-protein condensation disturbs synaptic plasticity and neuron survival and has been widely associated with human neurological disease. Neuronal granules are thought to condense around particular proteins that dictate the identity and composition of each granule type.

View Article and Find Full Text PDF

The RNA-binding proteins encoded by the highly conserved elav/Hu gene family, found in all metazoans, regulate the expression of a wide range of genes, at both the co-transcriptional and posttranscriptional level. Nervous-system-specific ELAV/Hu proteins are prominent for their essential role in neuron differentiation, and mutations have been associated with human neurodevelopmental and neurodegenerative diseases. Drosophila ELAV, the founding member of the protein family, mediates the synthesis of neuronal RNA signatures by promoting alternative splicing and alternative polyadenylation of hundreds of genes.

View Article and Find Full Text PDF

Intergenic transcription is a common feature of eukaryotic genomes and performs important and diverse cellular functions. Here, we investigate the iab-8 ncRNA from the Drosophila Bithorax Complex and show that this RNA is able to repress the transcription of genes located at its 3' end by a sequence-independent, transcriptional interference mechanism. Although this RNA is expressed in the early epidermis and CNS, we find that its repressive activity is limited to the CNS, where, in wild-type embryos, it acts on the Hox gene, abd-A, located immediately downstream of it.

View Article and Find Full Text PDF

The production of alternative RNA variants contributes to the tissue-specific regulation of gene expression. In the animal nervous system, a systematic shift toward distal sites of transcription termination produces transcript signatures that are crucial for neuron development and function. Here, we report that, in Drosophila, the highly conserved protein ELAV globally regulates all sites of neuronal 3' end processing and directly binds to proximal polyadenylation sites of target mRNAs in vivo.

View Article and Find Full Text PDF

Alternative pre-mRNA splicing (AS) is a critical regulatory mechanism that operates extensively in the nervous system to produce diverse protein isoforms. Fruitless AS isoforms have been shown to influence male courtship behavior, but the underlying mechanisms are unknown. Using genome-wide approaches and quantitative behavioral assays, we show that the P-element somatic inhibitor (PSI) and its interaction with the U1 small nuclear ribonucleoprotein complex (snRNP) control male courtship behavior.

View Article and Find Full Text PDF

Transcription initiation and mRNA maturation were long considered co-occurring but separately regulated events of gene control. In the past decade, gene promoters, the platforms of transcription initiation, have been assigned additional functions such as the regulation of splicing and 3' end processing. In a recent study, Oktaba and Zhang and al.

View Article and Find Full Text PDF

Alternative polyadenylation (APA) has been implicated in a variety of developmental and disease processes. A particularly dramatic form of APA occurs in the developing nervous system of flies and mammals, whereby various developmental genes undergo coordinate 3' UTR extension. In Drosophila, the RNA-binding protein ELAV inhibits RNA processing at proximal polyadenylation sites, thereby fostering the formation of exceptionally long 3' UTRs.

View Article and Find Full Text PDF

Post-transcriptional gene regulation is prevalent in the nervous system, where multiple tiers of regulatory complexity contribute to the development and function of highly specialized cell types. Whole-genome studies in Drosophila have identified several hundred genes containing long 3' extensions in neural tissues. We show that ELAV (embryonic-lethal abnormal visual system) is a key mediator of these neural-specific extensions.

View Article and Find Full Text PDF

The 3' termini of eukaryotic mRNAs influence transcript stability, translation efficiency, and subcellular localization. Here we report that a subset of developmental regulatory genes, enriched in critical RNA-processing factors, exhibits synchronous lengthening of their 3' UTRs during embryogenesis. The resulting UTRs are up to 20-fold longer than those found on typical Drosophila mRNAs.

View Article and Find Full Text PDF

miR-263a/b are members of a conserved family of microRNAs that are expressed in peripheral sense organs across the animal kingdom. Here we present evidence that miR-263a and miR-263b play a role in protecting Drosophila mechanosensory bristles from apoptosis by down-regulating the pro-apoptotic gene head involution defective. Both microRNAs are expressed in the bristle progenitors, and despite a difference in their seed sequence, they share this key common target.

View Article and Find Full Text PDF

microRNAs (miRNAs) bind to specific messenger RNA targets to posttranscriptionally modulate their expression. Understanding the regulatory relationships between miRNAs and targets remains a major challenge. Many miRNAs reduce expression of their targets to inconsequential levels.

View Article and Find Full Text PDF

The nonsense-mediated mRNA decay (NMD) pathway degrades mRNAs with premature translation termination codons (PTCs). The mechanisms by which PTCs and natural stop codons are discriminated remain unclear. We show that the position of stops relative to the poly(A) tail (and thus of PABPC1) is a critical determinant for PTC definition in Drosophila melanogaster.

View Article and Find Full Text PDF

Post-transcriptional control mechanisms play an important role in regulating gene expression during cellular responses to stress. For example, many stresses inhibit translation, and at least some stresses inhibit mRNA turnover in yeast and mammalian cells. We show that hyperosmolarity, heat shock, and glucose deprivation stabilize multiple mRNAs in yeast, primarily through inhibition of deadenylation.

View Article and Find Full Text PDF

The rate of mRNA degradation plays an important role in the control of gene expression. The mRNA stability is mainly dependent on cis-regulatory elements contained in the 3' or 5' untranslated region (UTR) of the mature mRNAs, and its regulation is an efficient way to adapt the level of a given transcript in the cell. Although this process has been well studied in cell culture, little is known about mRNA stability during embryonic development.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: