Publications by authors named "Valerie Haesler"

Article Synopsis
  • * Researchers collected and analyzed placentas from 61 SARS-CoV-2 infected pregnant women and 10 healthy controls to assess signs of viral presence and damage.
  • * Results showed active virus replication in the placenta linked to severe maternal COVID-19 symptoms, with significant replication noted in cases of stillbirth, indicating a possible connection between the virus and adverse pregnancy outcomes.
View Article and Find Full Text PDF

Perinatal white matter injury (WMI) is the leading cause of long-term neurological morbidity in infants born preterm. Neuroinflammation during a critical window of early brain development plays a key role in WMI disease pathogenesis. The mechanisms linking inflammation with the long-term myelination failure that characterizes WMI, however, remain unknown.

View Article and Find Full Text PDF

White matter injury (WMI) is a common neurological issue in premature-born neonates, often causing long-term disabilities. We recently demonstrated a key beneficial role of Wharton's jelly mesenchymal stromal cell-derived small extracellular vesicles (WJ-MSC-sEVs) microRNAs (miRNAs) in WMI-related processes in vitro. Here, we studied the functions of WJ-MSC-sEV miRNAs in vivo using a preclinical rat model of premature WMI.

View Article and Find Full Text PDF

Preterm birth is the leading cause of childhood morbidity and mortality and can result in white matter injury (WMI), leading to long-term neurological disabilities with global health burden. Mesenchymal stromal cell-derived small extracellular vesicles (MSC-sEV) are a promising therapeutic agent for treating perinatal neurological injury. They carry microRNAs (miRNAs) predicted to be involved in the onset of premature WMI.

View Article and Find Full Text PDF

The selection of an appropriate animal model is key to the production of results with optimal relevance to human disease. Particularly in the case of perinatal brain injury, a dearth of affected human neonatal tissue available for research purposes increases the reliance on animal models for insight into disease mechanisms. Improvements in obstetric and neonatal care in the past 20 years have caused the pathologic hallmarks of perinatal white matter injury (WMI) to evolve away from cystic necrotic lesions and toward diffuse regions of reactive gliosis and persistent myelin disruption.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a progressive motor neuronal disorder characterized by neuronal degeneration and currently no effective cure is available to stop or delay the disease from progression. Transplantation of murine glial-restricted precursors (mGRPs) is an attractive strategy to modulate ALS development and advancements such as the use of immune modulators could potentially extend graft survival and function. Using a well-established ALS transgenic mouse model (SOD1), we tested mGRPs in combination with the immune modulators synthetic PreImplantation Factor (sPIF), Tacrolimus (Tac), and Costimulatory Blockade (CB).

View Article and Find Full Text PDF

Failed or altered gliogenesis is a major characteristic of diffuse white matter injury in survivors of premature birth. The developmentally regulated long noncoding RNA (lncRNA) H19 inhibits S-adenosylhomocysteine hydrolase (SAHH) and contributes to methylation of diverse cellular components, such as DNA, RNA, proteins, lipids, and neurotransmitters. We showed that the pregnancy-derived synthetic PreImplantation Factor (sPIF) induces expression of the nuclear receptor corepressor 2 (NCOR2) via H19/SAHH-mediated DNA demethylation.

View Article and Find Full Text PDF

Peripartum cerebral hypoxia and ischemia, and intrauterine infection and inflammation, are detrimental for the precursor cells of the myelin-forming oligodendrocytes in the prematurely newborn, potentially leading to white matter injury (WMI) with long-term neurodevelopmental sequelae. Previous data show that hypomyelination observed in WMI is caused by arrested oligodendroglial maturation rather than oligodendrocyte-specific cell death. In a rat model of premature WMI, we have recently shown that small extracellular vesicles (sEV) derived from Wharton's jelly mesenchymal stromal cells (WJ-MSC) protect from myelination deficits.

View Article and Find Full Text PDF

Preterm birth (PTB) is the leading cause of neonatal morbidity and mortality and spontaneous PTB is a major contributor. The preceding inflammation/infection contributes not only to spontaneous PTB but is associated with neonatal morbidities including impaired brain development. Therefore, control of exaggerated immune response during pregnancy is an attractive strategy.

View Article and Find Full Text PDF

Perinatal brain injury (PBI) in preterm birth is associated with substantial injury and dysmaturation of white and gray matter, and can lead to severe neurodevelopmental deficits. Mesenchymal stromal cells (MSC) have been suggested to have neuroprotective effects in perinatal brain injury, in part through the release of extracellular vesicles like exosomes. We aimed to evaluate the neuroprotective effects of intranasally administered MSC-derived exosomes and their potential to improve neurodevelopmental outcome after PBI.

View Article and Find Full Text PDF

Background: Preterm newborns are at high risk of developing neurodevelopmental deficits caused by neuroinflammation leading to perinatal brain injury. Human Wharton's jelly mesenchymal stem cells (hWJ-MSC) derived from the umbilical cord have been suggested to reduce neuroinflammation, in part through the release of extracellular vesicle-like exosomes. Here, we studied whether exosomes derived from hWJ-MSC have anti-inflammatory effects on microglia-mediated neuroinflammation in perinatal brain injury.

View Article and Find Full Text PDF