Humans preferentially rely on horizontal cues when recognizing face identity. The reasons for this preference are largely elusive. Past research has proposed the existence of two main sources of face identity information: shape and surface reflectance.
View Article and Find Full Text PDFVisual abilities tend to vary predictably across the visual field-for simple low-level stimuli, visibility is better along the horizontal vs. vertical meridian and in the lower vs. upper visual field.
View Article and Find Full Text PDFHuman vision in the periphery is most accurate for stimuli that point towards the fovea. This so-called radial bias has been linked with the organization and spatial selectivity of neurons at the lowest levels of the visual system, from retinal ganglion cells onwards. Despite evidence that the human visual system is radially biased, it is not yet known whether this bias persists at higher levels of processing, or whether high-level representations are invariant to this low-level orientation bias.
View Article and Find Full Text PDFNatural images exhibit luminance variations aligned across a broad spectrum of spatial frequencies (SFs). It has been proposed that, at early stages of processing, the coarse signals carried by the low SF (LSF) of the visual input are sent rapidly from primary visual cortex (V1) to ventral, dorsal and frontal regions to form a coarse representation of the input, which is later sent back to V1 to guide the processing of fine-grained high SFs (i.e.
View Article and Find Full Text PDFContextual modulations at primary stages of visual processing depend on the strength of local input. Contextual modulations at high-level stages of (face) processing show a similar dependence to local input strength. Namely, the discriminability of a facial feature determines the amount of influence of the face context on that feature.
View Article and Find Full Text PDFThe ability to detect faces in the environment is of utmost ecological importance for human social adaptation. While face categorization is efficient, fast and robust to sensory degradation, it is massively impaired when the facial stimulus does not match the natural contrast statistics of this visual category, i.e.
View Article and Find Full Text PDFVisual images contain redundant information across spatial scales where low spatial frequency contrast is informative towards the location and likely content of high spatial frequency detail. Previous research suggests that the visual system makes use of those redundancies to facilitate efficient processing. In this framework, a fast, initial analysis of low-spatial frequency (LSF) information guides the slower and later processing of high spatial frequency (HSF) detail.
View Article and Find Full Text PDFAt what level of spatial resolution can the human brain recognize a familiar face in a crowd of strangers? Does it depend on whether one approaches or rather moves back from the crowd? To answer these questions, 16 observers viewed different unsegmented images of unfamiliar faces alternating at 6 Hz, with spatial frequency (SF) content progressively increasing (i.e., coarse-to-fine) or decreasing (fine-to-coarse) in different sequences.
View Article and Find Full Text PDFOrientation selectivity is a fundamental property of primary visual encoding. High-level processing stages also show some form of orientation dependence, with face identification preferentially relying on horizontally-oriented information. How high-level orientation tuning emerges from primary orientation biases is unclear.
View Article and Find Full Text PDFVision begins with the encoding of contrast at specific orientations. Several works showed that humans identify their conspecifics best based on the horizontally-oriented information contained in the face image; this range conveys the main morphological features of the face. In contrast, the vertical structure of the eye region seems to deliver optimal cues to gaze direction.
View Article and Find Full Text PDFCrowding (the disruption of object recognition in clutter) presents the fundamental limitation on peripheral vision. For simple objects, crowding is strong when target/flanker elements are similar and weak when they differ - a selectivity for target-flanker similarity. In contrast, the identification of upright holistically-processed face stimuli is more strongly impaired by upright than inverted flankers, whereas inverted face-targets are impaired by both - a pattern attributed to an additional stage of crowding selective for "holistic similarity" between faces.
View Article and Find Full Text PDFFace perception depends on a dynamic interplay of a "holistic" Interactive Feature Processing (IFP) and a Local Feature Processing (LFP) style. However, it is unclear whether features are processed locally before they are integrated into a holistic percept (Fine-to-Coarse strategy), or whether local feature processing occurs only after a holistic percept is established (Coarse-to-Fine strategy). The present Event-Related Potentials study investigates whether IFP precedes LFP (Coarse-to-Fine) or vice versa (Fine-to-Coarse).
View Article and Find Full Text PDFEffective human interaction depends on our ability to rapidly detect faces in dynamic visual environments. Here we asked how basic units of visual information (spatial frequencies, or SF) contribute to this fundamental brain function. Human observers viewed initially blurry, unrecognizable natural object images presented at a fast 12 Hz rate and parametrically increasing in SF content over the course of 1 minute.
View Article and Find Full Text PDFRecent work demonstrates that human face identification is most efficient when based on horizontal, rather than vertical, image structure. Because it is unclear how this specialization for upright (compared to inverted) face processing emerges in the visual system, the present study aimed to systematically characterize the orientation sensitivity profile for face identification. With upright faces, identification performance in a delayed match-to-sample task was highest for horizontally filtered images and declined sharply with oblique and vertically filtered images.
View Article and Find Full Text PDFFaces convey complex social signals to primates. These signals are tolerant of some image transformations (e.g.
View Article and Find Full Text PDFHorizontal information is crucial to face processing in adults. Yet the ontogeny of this preferential type of processing remains unknown. To clarify this issue, we tested 3-month-old infants' sensitivity to horizontal information within faces.
View Article and Find Full Text PDFRecent work indicates that the specialization of face visual perception relies on the privileged processing of horizontal angles of facial information. This suggests that stimulus properties assumed to be fully resolved in primary visual cortex (V1; e.g.
View Article and Find Full Text PDFPrior research has provided strong evidence for spatial-numerical associations. Single digits can for instance act as attentional cues, orienting visuo-spatial attention to the left or right hemifield depending on the digit's magnitude, thus facilitating target detection in the cued hemifield (left/right hemifield after small/large digits, respectively). Studies using other types of behaviourally or biologically relevant central cues known to elicit automated symbolic attention orienting effects such as arrows or gaze have shown that the initial facilitation of cued target detection can turn into inhibition at longer stimulus onset asynchronies (SOAs).
View Article and Find Full Text PDFFace recognition in young human adults preferentially relies on the processing of horizontally-oriented visual information. We addressed whether the horizontal tuning of face perception is modulated by the extensive experience humans acquire with faces over the lifespan, or whether it reflects an invariable processing bias for this visual category. We tested 296 subjects aged from 6 to 74 years in a face matching task.
View Article and Find Full Text PDFBackground: While the automatic processing of alcohol-related cues by alcohol abusers is well established in experimental psychopathology approaches, the cerebral regions involved in this phenomenon and the influence of alcohol intake on this process remain unknown. The aim of this functional magnetic resonance imaging (fMRI) study was to investigate the neural mechanisms underlying the processing of task-irrelevant alcohol-related stimuli in young heavy drinkers and their modulation by alcohol administration.
Methods: Twelve heavy drinking male participants were scanned on 2 separate days; once after a low dose of alcohol intake (0.
The specificity of face perception is thought to reside both in its dramatic vulnerability to picture-plane inversion and its strong reliance on horizontally oriented image content. Here we asked when in the visual processing stream face-specific perception is tuned to horizontal information. We measured the behavioral performance and scalp event-related potentials (ERP) when participants viewed upright and inverted images of faces and cars (and natural scenes) that were phase-randomized in a narrow orientation band centered either on vertical or horizontal orientation.
View Article and Find Full Text PDFRecent evidence suggests that the Fusiform Face Area (FFA) is not exclusively dedicated to the interactive processing of face features, but also contains neurons sensitive to local features. This suggests the existence of both interactive and local processing modes, consistent with recent behavioral findings that the strength of interactive feature processing (IFP) engages most strongly when similar features need to be disambiguated. Here we address whether the engagement of the FFA into interactive versus featural representational modes is governed by local feature discriminability.
View Article and Find Full Text PDFNumber processing interacts with space encoding in a wide variety of experimental paradigms. Most intriguingly, the passive viewing of uninformative number symbols can shift visuo-spatial attention to different target locations according to the number magnitude, i.e.
View Article and Find Full Text PDF