Recent decarbonization efforts have led to interests in producing more bio-based chemicals. One attractive compound produced biochemically is the platform chemical known as 2,3-butanediol (2,3-BDO). In this work a mild alkaline pretreatment using sodium carbonate was performed on corn stover (CS) and switchgrass (SG) to generate hydrolysates for fermentation with the 2,3-BDO producer bacteria strain Paenibacillius polymyxa.
View Article and Find Full Text PDFCarbonized lignin has been proposed as a sustainable and domestic source of activated, amorphous, graphitic, and nanostructured carbon for many industrial applications as the structure can be tuned through processing conditions. However, the inherent variability of lignin and its complex physicochemical structure resulting from feedstock and pulping selection make the Process-Structure-Property-Performance (PSPP) relationships hard to define. In this work, radial distribution functions (RDFs) from synchrotron X-ray and neutron scattering of lignin-based carbon composites (LBCCs) are investigated using the Hierarchical Decomposition of the Radial Distribution Function (HDRDF) modelling method to characterize the local atomic environment and develop quantitative PSPP relationships.
View Article and Find Full Text PDFThe production of renewable chemicals and biofuels must be cost- and performance- competitive with petroleum-derived equivalents to be widely accepted by markets and society. We propose a biomass conversion strategy that maximizes the conversion of lignocellulosic biomass (up to 80% of the biomass to useful products) into high-value products that can be commercialized, providing the opportunity for successful translation to an economically viable commercial process. Our fractionation method preserves the value of all three primary components: (i) cellulose, which is converted into dissolving pulp for fibers and chemicals production; (ii) hemicellulose, which is converted into furfural (a building block chemical); and (iii) lignin, which is converted into carbon products (carbon foam, fibers, or battery anodes), together producing revenues of more than $500 per dry metric ton of biomass.
View Article and Find Full Text PDF