Background: Meyerozyma guilliermondii is a yeast species responsible for invasive fungal infections. It has high minimum inhibitory concentrations (MICs) to echinocandins, the first-line treatment of candidemia. In this context, azole antifungal agents are frequently used.
View Article and Find Full Text PDFObjectives: Caspofungin is an echinocandin antifungal agent that inhibits synthesis of glucan required for the fungal cell wall. Resistance is mediated by mutation of Fks1 glucan synthase, among which S645P is the most common resistance-associated polymorphism. Rapamycin is a macrolide that inhibits the mechanistic target of rapamycin (mTOR) protein kinase activity.
View Article and Find Full Text PDFObjectives: A strain of the opportunistic pathogenic yeast Candida lusitaniae was genetically engineered for full-length replacement of the FKS1 gene encoding the target of echinocandin antifungals in order to assess the impact of FKS mutations on echinocandin resistance and reduced echinocandin susceptibility (RES).
Methods: FKS1 allelic exchange was achieved by transforming C. lusitaniae with two DNA fragments covering the entire FKS1 ORF.
A strain of the opportunistic pathogenic yeast was genetically modified for use as a cellular model for assessing by allele replacement the impact of lanosterol C14α-demethylase mutations on azole resistance. was chosen because it is susceptible to azole antifungals, it belongs to the CTG clade of yeast, which includes most of the species pathogenic for humans, and it is haploid and easily amenable to genetic transformation and molecular modeling. In this work, allelic replacement is targeted at the locus by the reconstitution of a functional auxotrophic marker in the 3' intergenic region of Homologous and heterologous alleles are expressed from the resident promoter of , allowing accurate comparison of the phenotypic change in azole susceptibility.
View Article and Find Full Text PDFWe report on the first cloning and nucleotide sequencing of an ERG11 allele from a clinical isolate of Candida kefyr cross-resistant to azole antifungals. It was recovered from a stem cell transplant patient, in an oncohematology unit exhibiting unexpected high prevalence of C. kefyr.
View Article and Find Full Text PDFWe report on a fatal invasive infection due to the ascomycetous fungus Neocosmospora vasinfecta, in a 20-year-old European patient suffering from an acute lymphoblastic leukemia. The infection could not be controlled by a bitherapy combining liposomal amphotericin B and voriconazole. This is the second case of disseminated infection reported with this unusual fungus, which develops under its teleomorphic state, is fully resistant to all systemic antifungals, and which is known to live in tropical countries.
View Article and Find Full Text PDFSince the early 1980s, fungi have emerged as a major cause of human disease. Fungal infections are associated with high levels of morbidity and mortality, and are now recognized as an important public health problem. Gram-negative bacterial strains of genus Xenorhabdus are known to form symbiotic associations with soil-dwelling nematodes of the Steinernematidae family.
View Article and Find Full Text PDFThe aim of this work was to elucidate the molecular mechanisms of flucytosine (5FC) resistance and 5FC/fluconazole (FLC) cross-resistance in 11 genetically and epidemiologically unrelated clinical isolates of Candida lusitaniae. We first showed that the levels of transcription of the FCY2 gene encoding purine-cytosine permease (PCP) in the isolates were similar to that in the wild-type strain, 6936. Nucleotide sequencing of the FCY2 alleles revealed that 5FC and 5FC/FLC resistance could be correlated with a cytosine-to-thymine substitution at nucleotide 505 in the fcy2 genes of seven clinical isolates, resulting in a nonsense mutation and in a putative nonfunctional truncated PCP of 168 amino acids.
View Article and Find Full Text PDF