A chiral chemical potential present in the early Universe can source helical hypermagnetic fields through the chiral plasma instability. If these hypermagnetic fields survive until the electroweak phase transition, they source a contribution to the baryon asymmetry of the Universe. In this Letter, we demonstrate that lepton flavor asymmetries above |μ|/T∼9×10^{-3} trigger this mechanism even for vanishing total lepton number.
View Article and Find Full Text PDFGravitational waves (GWs) generate oscillating electromagnetic effects in the vicinity of external electric and magnetic fields. We discuss this phenomenon with a particular focus on reinterpreting the results of axion haloscopes based on lumped-element detectors, which probe GWs in the 100 kHz-100 MHz range. Measurements from ABRACADABRA and SHAFT already place bounds on GWs, although the present strain sensitivity is weak.
View Article and Find Full Text PDFWe present a leptogenesis mechanism based on the standard type-I seesaw model that successfully operates at right-handed-neutrino masses as low as a few hundred TeV. This mechanism, which we dub wash-in leptogenesis, does not require any CP violation in the neutrino sector and can be implemented even in the regime of strong wash-out. The key idea behind wash-in leptogenesis is to generalize standard freeze-out leptogenesis to a nonminimal cosmological background in which the chemical potentials of all particles not in chemical equilibrium at the temperature of leptogenesis are allowed to take arbitrary values.
View Article and Find Full Text PDFPhys Rev Lett
January 2021
In the presence of magnetic fields, gravitational waves are converted into photons and vice versa. We demonstrate that this conversion leads to a distortion of the cosmic microwave background (CMB), which can serve as a detector for MHz to GHz gravitational wave sources active before reionization. The measurements of the radio telescope EDGES can be cast as a bound on the gravitational wave amplitude, h_{c}<10^{-21}(10^{-12}) at 78 MHz, for the strongest (weakest) cosmic magnetic fields allowed by current astrophysical and cosmological constraints.
View Article and Find Full Text PDF