Publications by authors named "Valerie Chavez-Demoulin"

Unlabelled: Confounding variables are a recurrent challenge for causal discovery and inference. In many situations, complex causal mechanisms only manifest themselves in extreme events, or take simpler forms in the extremes. Stimulated by data on extreme river flows and precipitation, we introduce a new causal discovery methodology for heavy-tailed variables that allows the effect of a known potential confounder to be almost entirely removed when the variables have comparable tails, and also decreases it sufficiently to enable correct causal inference when the confounder has a heavier tail.

View Article and Find Full Text PDF

We provide an analysis of a randomly grown 2-d network which models the morphological growth of dendritic and axonal arbors. From the stochastic geometry of this model we derive a dynamic graph of potential synaptic connections. We estimate standard network parameters such as degree distribution, average shortest path length and clustering coefficient, considering all these parameters as functions of time.

View Article and Find Full Text PDF