Small molecule probes exist for only ∼2% of human proteins because most lack functional binding pockets or cannot be assayed for high-throughput screening. Selective translation modulation circumvents canonical druggability and assay development constraints by using in vitro transcription-translation (IVTT) as a universal biochemical screening assay. We developed an IVTT activity assay by fusing a GFP reporter to various target gene sequences and screened the target sequences for inhibitors in microfluidic picoliter-scale droplets using a 5,348-member translation inhibitor DNA-encoded library (DEL).
View Article and Find Full Text PDFEncoded combinatorial library technologies have dramatically expanded the chemical space for screening but are usually only analyzed by affinity selection binding. It would be highly advantageous to reformat selection outputs to "one-bead-one-compound" solid-phase libraries, unlocking activity-based and cellular screening capabilities. Here, we describe hydrogel-encapsulated magnetic beads that enable such a transformation.
View Article and Find Full Text PDFNature evolves molecular interaction networks through persistent perturbation and selection, in stark contrast to drug discovery, which evaluates candidates one at a time by screening. Here, nature's highly parallel ligand-target search paradigm is recapitulated in a screen of a DNA-encoded library (DEL; 73,728 ligands) against a library of RNA structures (4,096 targets). In total, the screen evaluated ∼300 million interactions and identified numerous bona fide ligand-RNA three-dimensional fold target pairs.
View Article and Find Full Text PDFEmulsions offer the means to miniaturize and parallelize high-throughput screening but require a robust method to localize activity-based fluorescent probes in each droplet. Multiplexing probes in droplets is impractical, though highly desirable for identifying library members that possess very specific activity. Here, we present multiplexed probe immobilization on library beads for emulsion screening.
View Article and Find Full Text PDFRobotic high-throughput compound screening (HTS) and, increasingly, DNA-encoded library (DEL) screening are driving bioactive chemical matter discovery in the postgenomic era. HTS enables activity-based investigation of highly complex targets using static compound libraries. Conversely, DEL grants efficient access to novel chemical diversity, although screening is limited to affinity-based selections.
View Article and Find Full Text PDFAutomated and reproducible sample handling is a key requirement for high-throughput compound screening and currently demands heavy reliance on expensive robotics in screening centers. Integrated droplet microfluidic screening processors are poised to replace robotic automation by miniaturizing biochemical reactions to the droplet scale. These processors must generate, incubate, and sort droplets for continuous droplet screening, passively handling millions of droplets with complete uniformity, especially during the key step of sample incubation.
View Article and Find Full Text PDFCellular transitions are achieved by the concerted actions of regulated degradation pathways. In the case of the cell cycle, ubiquitin mediated degradation ensures unidirectional transition from one phase to another. For instance, turnover of the cell cycle regulator cyclin B1 occurs after metaphase to induce mitotic exit.
View Article and Find Full Text PDFCombinatorial bead libraries figure prominently in next-generation sequencing and are also important tools for in vitro evolution. The most common methodology for generating such bead libraries, emulsion PCR (emPCR), enzymatically extends bead-immobilized oligonucleotide PCR primers in emulsion droplets containing a single progenitor library member. Primers are almost always immobilized on beads via noncovalent biotin-streptavidin binding.
View Article and Find Full Text PDFThe circulating antibody repertoire encodes a patient's health status and pathogen exposure history, but identifying antibodies with diagnostic potential usually requires knowledge of the antigen(s). We previously circumvented this problem by screening libraries of bead-displayed small molecules against case and control serum samples to discover "epitope surrogates" (ligands of IgGs enriched in the case sample). Here, we describe an improved version of this technology that employs DNA-encoded libraries and high-throughput FACS-based screening to discover epitope surrogates that differentiate noninfectious/latent (LTB) patients from infectious/active TB (ATB) patients, which is imperative for proper treatment selection and antibiotic stewardship.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2016
Mapping posttranslational modifications (PTMs), which diversely modulate biological functions, represents a significant analytical challenge. The centerpiece technology for PTM site identification, mass spectrometry (MS), requires proteolytic cleavage in the vicinity of a PTM to yield peptides for sequencing. This requirement catalyzed our efforts to evolve MS-grade mutant PTM-directed proteases.
View Article and Find Full Text PDFResistance to endocrine therapies remains a major clinical problem for the treatment of estrogen receptor-α (ERα)-positive breast cancer. On-target side effects limit therapeutic compliance and use for chemoprevention, highlighting an unmet need for new therapies. Here we present a full-antagonist ligand series lacking the prototypical ligand side chain that has been universally used to engender antagonism of ERα through poorly understood structural mechanisms.
View Article and Find Full Text PDFThe promise of exploiting combinatorial synthesis for small molecule discovery remains unfulfilled due primarily to the "structure elucidation problem": the back-end mass spectrometric analysis that significantly restricts one-bead-one-compound (OBOC) library complexity. The very molecular features that confer binding potency and specificity, such as stereochemistry, regiochemistry, and scaffold rigidity, are conspicuously absent from most libraries because isomerism introduces mass redundancy and diverse scaffolds yield uninterpretable MS fragmentation. Here we present DNA-encoded solid-phase synthesis (DESPS), comprising parallel compound synthesis in organic solvent and aqueous enzymatic ligation of unprotected encoding dsDNA oligonucleotides.
View Article and Find Full Text PDFA subset of nuclear receptors (NRs) function as obligate heterodimers with retinoid X receptor (RXR), allowing integration of ligand-dependent signals across the dimer interface via an unknown structural mechanism. Using nuclear magnetic resonance (NMR) spectroscopy, x-ray crystallography and hydrogen/deuterium exchange (HDX) mass spectrometry, here we show an allosteric mechanism through which RXR co-operates with a permissive dimer partner, peroxisome proliferator-activated receptor (PPAR)-γ, while rendered generally unresponsive by a non-permissive dimer partner, thyroid hormone (TR) receptor. Amino acid residues that mediate this allosteric mechanism comprise an evolutionarily conserved network discovered by statistical coupling analysis (SCA).
View Article and Find Full Text PDFResveratrol has beneficial effects on aging, inflammation and metabolism, which are thought to result from activation of the lysine deacetylase, sirtuin 1 (SIRT1), the cAMP pathway, or AMP-activated protein kinase. In this study, we report that resveratrol acts as a pathway-selective estrogen receptor-α (ERα) ligand to modulate the inflammatory response but not cell proliferation. A crystal structure of the ERα ligand-binding domain (LBD) as a complex with resveratrol revealed a unique perturbation of the coactivator-binding surface, consistent with an altered coregulator recruitment profile.
View Article and Find Full Text PDFLigand-binding dynamics control allosteric signaling through the estrogen receptor-α (ERα), but the biological consequences of such dynamic binding orientations are unknown. Here, we compare a set of ER ligands having dynamic binding orientation (dynamic ligands) with a control set of isomers that are constrained to bind in a single orientation (constrained ligands). Proliferation of breast cancer cells directed by constrained ligands is associated with DNA binding, coactivator recruitment and activation of the estrogen-induced gene GREB1, reflecting a highly interconnected signaling network.
View Article and Find Full Text PDFCompounds that block estrogen action through the estrogen receptor (ER) or downregulate ER levels are useful for the treatment of breast cancer and endocrine disorders. In our search for structurally novel estrogens having three-dimensional core scaffolds, we found some compounds with a 7-oxabicyclo[2.2.
View Article and Find Full Text PDFTo develop estrogen receptor (ER) ligands having novel structures and activities, we have explored compounds in which the central hydrophobic core has a more three-dimensional topology than typically found in estrogen ligands and thus exploits the unfilled space in the ligand-binding pocket. Here, we build upon our previous investigations of 7-oxabicyclo[2.2.
View Article and Find Full Text PDFCell cycle progression is dependent upon coordinate regulation of kinase and proteolytic pathways. Inhibitors of cell cycle transitions are degraded to allow progression into the subsequent cell cycle phase. For example, the tyrosine kinase and Cdk1 inhibitor Wee1 is degraded during G(2) and mitosis to allow mitotic progression.
View Article and Find Full Text PDFUlk1 is a serine/threonine kinase that controls macroautophagy, an essential homeostatic recycling pathway that degrades bulk cytoplasmic material and directs the turnover of organelles such as peroxisomes and mitochondria. Further, macroautophagy is potently induced by signals that trigger metabolic stress, such as hypoxia and amino acid starvation, where its recycling functions provide macromolecules necessary to maintain catabolic metabolism and cell survival. Substrates for Ulk1 have not been identified, and little is known regarding post-translational control of Ulk1 kinase activity and function.
View Article and Find Full Text PDFWe present here the results of protein extraction from different ocular regions using different detergents. Extraction strategies used to determine optimal protein extraction included: pressure cycling and aqueous-organic phase extraction in combination with electrophoretic fractionation for anterior, posterior, and peripapillary sclera. Detergent extraction of proteins from freshly enucleated porcine eyes (n = 8) showed significant differences for different eye regions.
View Article and Find Full Text PDFSignal transduction pathways often use a transcriptional component to mediate adaptive cellular responses. Coactivator proteins function prominently in these pathways as the conduit to the basic transcriptional machinery. Here we present a high-throughput cell-based screening strategy, termed the "coactivator trap," to study the functional interactions of coactivators with transcription factors.
View Article and Find Full Text PDFProteomic analyses of male songbird (Zebra finch; Taeniopygia guttata; ZF) retina were performed resulting in identification of 129 proteins. Comparison of T. guttata retinal proteome with that of chicken found proteins detected in both retinas.
View Article and Find Full Text PDF