α-synuclein is an intrinsically disordered protein (IDP) whose aggregation in presynaptic neuronal cells is a pathological hallmark of Lewy body formation and Parkinson's disease. This aggregation process is likely affected by the crowded macromolecular cellular environment. In this study, α-synuclein was studied in the presence of both a synthetic crowder, Ficoll70, and a biological crowder composed of lysed cells that better mimics the biocomplexity of the cellular environment.
View Article and Find Full Text PDFThe intracellular milieu is crowded and heterogeneous, and this can have profound consequences for biomolecule motions and biochemical kinetics. Macromolecular crowding has been traditionally studied in artificial crowders like Ficoll and dextran or globular proteins such as bovine serum albumin. It is, however, not clear if the effects of artificial crowders on such phenomena are the same as the crowding that is experienced in a heterogeneous biological environment.
View Article and Find Full Text PDFUnderstanding how non-lipid components of bacteria affect antimicrobial peptide (AMP)-induced membrane disruption is important for a comprehensive understanding of AMP mechanisms and informing AMP-based drug development. This study investigates how lipopolysaccharide (LPS) affects membrane disruption by the AMP MSI-78 and compares the results to the effect of TP2, a cell-penetrating peptide that crosses membrane bilayers without permeabilizing them. We destabilize the LPS layer of () cells via chelation of the stabilizing divalent cations.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
September 2022
Understanding how non-lipid components of bacteria affect antimicrobial peptide (AMP)-induced membrane disruption is important for a comprehensive understanding of AMP mechanisms and informing AMP-based drug development. This study investigates how lipopolysaccharide (LPS) affects membrane disruption by the AMP MSI-78 and compares the results to the effect of TP2, a cell-penetrating peptide that crosses membrane bilayers without permeabilizing them. We destabilize the LPS layer of Escherichia coli (E.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) offer advantages over conventional antibiotics; for example, bacteria develop more resistance to small-molecule antibiotics than to AMPs. The interaction of the AMPs with the lipopolysaccharide (LPS) layer of the Gram-negative bacteria cell envelope is not well understood. A MARTINI model was constructed of a Gram-negative bacterial outer membrane interacting with the AMP Magainin 2.
View Article and Find Full Text PDFMuch of the work probing antimicrobial peptide (AMP) mechanisms has focussed on how these molecules permeabilize lipid bilayers. However, AMPs must also traverse a variety of non-lipid cell envelope components before they reach the lipid bilayer. Additionally, there is a growing list of AMPs with non-lipid targets inside the cell.
View Article and Find Full Text PDFWhile peptides can be excellent therapeutics for several conditions, their limited in vivo half-lives have been a major bottleneck in the development of therapeutic peptides. Conjugating the peptide to an inert chemical moiety is a strategy that has repeatedly proven to be successful in extending the half-life of some therapeutics. This systematic review and meta-analysis was conducted to examine the available literature and assess it in an unbiased manner to determine which conjugates, both biological and synthetic, provide the greatest increase in therapeutic peptide half-life.
View Article and Find Full Text PDFFront Med Technol
January 2021
Solid state NMR has been tremendously useful in characterizing the structure and dynamics of model membranes composed of simple lipid mixtures. Model lipid studies employing solid state NMR have included important work revealing how membrane bilayer structure and dynamics are affected by molecules such as antimicrobial peptides (AMPs). However, solid state NMR need not be applied only to model membranes, but can also be used with living, intact cells.
View Article and Find Full Text PDFOtosclerosis is a bone disorder of the otic capsule and common form of late-onset hearing impairment. Considered a complex disease, little is known about its pathogenesis. Over the past 20 years, ten autosomal dominant loci (OTSC1-10) have been mapped but no genes identified.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
November 2020
Gad-1 and Gad-2 are helical, histidine-rich antimicrobial peptides (AMPs) from paralogous genes in cod. N and H solid state nuclear magnetic resonance (NMR) were used to characterize their lipid-bound structures and lipid interactions. Gad-1 was found to position in-plane in POPC: POPG bilayers.
View Article and Find Full Text PDFThe histidine-rich antimicrobial peptides Gad-1 and Gad-2, from paralogous genes in cod, provide an opportunity to examine the effect of charge and nonelectrostatic factors on peptide-vesicle interaction and on peptide antimicrobial activity. In this study, the dependence of vesicle ζ-potential on peptide concentration has been used to examine the binding of these peptides to model vesicle surfaces at pH = 5.0, for which the charges of Gad-1 and Gad-2 are +8 and +5, respectively, and at pH = 7.
View Article and Find Full Text PDFAlthough lung surfactant protein B (SP-B) is an essential protein that plays a crucial role in breathing, the details of its structure and mechanism are not well understood. SP-B forms covalent homodimers, and in this work we use all-atom molecular dynamics simulations to study dimeric SP-B's structure and its behavior in promoting lipid structural transitions. Four initial system configurations were constructed based on current knowledge of SP-B's structure and mechanism, and the protein maintained a helicity consistent with experiment in all systems.
View Article and Find Full Text PDFSP-B, a lung surfactant protein fragment, and magainin 2, an antimicrobial peptide, are amphipathic peptides with the same overall charge but different biological functions. Deuterium nuclear magnetic resonance has been used to compare the interactions of these peptides with dispersions of 1,2-dimyristoyl- sn-glycero-3-phophocholine (DMPC)/1,2-dihexanoyl- sn-glycero-3-phophocholine (DHPC) (4:1) and DMPC/1,2-dimyristoyl- sn-glycero-3-phopho-(1'-rac-glycerol) (DMPG)/DHPC (3:1:1), two mixtures of long-chain and short-chain lipids that display bicellar behavior. This study exploited the sensitivity of a bicellar system structural organization to factors that modify partitioning of their lipid components between different environments.
View Article and Find Full Text PDFLung surfactant, besides alveolar stability, also provides defence against pathogens by surfactant proteins (SP), SP-A and SP-D. The hydrophobic proteins SP-B and SP-C enhance surface activity. An unusual and paradoxical effect of bovine LS and synthetic model LS with SP-B/-C was bactericidal to Staphylococcus aureus and Escherichia coli.
View Article and Find Full Text PDFBiochim Biophys Acta Proteins Proteom
November 2017
Discoveries relating to innate immunity and antimicrobial peptides (AMPs) granted Bruce Beutler and Jules Hoffmann a Nobel prize in medicine in 2011, and opened up new avenues for the development of therapies against infections, and even cancers. The mechanisms by which AMPs interact with, and ultimately disrupt, bacterial cell membranes is still, to a large extent, incompletely understood. Up until recently, this mechanism was studied using model lipid membranes that failed to reproduce the complexity of molecular interactions present in real cells comprising lipids but also membrane proteins, a cell wall containing peptidoglycan or lipopolysaccharides, and other molecules.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) may interact with a variety of target cell components, including the lipid bilayer, non-lipidic cell envelope components, and/or intracellular targets. However, most biophysical experiments aimed at elucidating the detailed mechanism of AMPs are limited to simple model membrane systems and neglect potentially functional interactions between AMPs and non-lipidic cell components. One of the biophysical techniques commonly used to study how AMPs interact with lipid bilayers is solid-state deuterium NMR.
View Article and Find Full Text PDFLung surfactant protein B (SP-B), a 79 residue, hydrophobic protein from the saposin superfamily, plays an essential role in breathing. Because of the extreme hydrophobicity of SP-B, the experimental structure of this protein has not yet been determined. Here, we run all-atom molecular dynamics simulations using the OPLS-AA force field in GROMACS to study SP-B's structure and mechanisms for promoting lipid reorganization.
View Article and Find Full Text PDFDifferential Scanning Calorimetry (DSC) of intact Escherichia coli (E. coli) was used to identify non-lipidic targets of the antimicrobial peptide (AMP) MSI-78. The DSC thermograms revealed that, in addition to its known lytic properties, MSI-78 also has a striking effect on ribosomes.
View Article and Find Full Text PDFGad-1 and Gad-2 are antimicrobial peptide (AMP) sequences encoded by paralogous genes. They are rich in histidine, which suggests that their activity might be pH-dependent. We examined their structure-function relationships with a view to learning how to improve AMP therapeutic ratios.
View Article and Find Full Text PDFGaduscidin-1 and -2 (GAD-1 and GAD-2) are antimicrobial peptides (AMPs) that contain several histidine residues and are thus expected to exhibit pH-dependent activity. In order to help elucidate their mechanism of membrane disruption, we have performed molecular dynamics simulations with the peptides in both histidine-charged and histidine-neutral forms, along with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid molecules. The simulations employed GROMACS software and an OPLS-AA force field.
View Article and Find Full Text PDFBreathing is enabled by lung surfactant, a mixture of proteins and lipids that forms a surface-active layer and reduces surface tension at the air-water interface in lungs. Surfactant protein B (SP-B) is an essential component of lung surfactant. In this study we probe the mechanism underlying the important functional contributions made by the N-terminal 7 residues of SP-B, a region sometimes called the "insertion sequence".
View Article and Find Full Text PDFThe hydrophobic lung surfactant SP-B is essential for respiration. SP-B promotes spreading and adsorption of surfactant at the alveolar air-water interface and may facilitate connections between the surface layer and underlying lamellar reservoirs of surfactant material. SP-B63-78 is a cationic and amphipathic helical peptide containing the C-terminal helix of SP-B.
View Article and Find Full Text PDFPulsed-field-gradient nuclear magnetic resonance (PFG-NMR) is used to obtain the true hydrodynamic size of complexes of peptides with sodium dodecyl sulfate SDS micelles. The peptide used in this study is a 19-residue antimicrobial peptide, GAD-2. Two smaller dipeptides, alanine-glycine (Ala-Gly) and tyrosine-leucine (Tyr-Leu), are used for comparison.
View Article and Find Full Text PDFAims: Autosomal dominant arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) (in the group of arrhythmogenic cardiomyopathies) is a common cause of sudden cardiac death in young adults. It is both clinically and genetically heterogeneous, with 12 loci (ARVC/D1-12) and eight genes identified, the majority of which encode structural proteins of cardiac desmosomes. The most recent gene identified, TMEM43, causes disease due to a missense mutation in a non-desmosomal gene (p.
View Article and Find Full Text PDF