Chemical skin and respiratory allergies are becoming a major health problem. To date our knowledge on the process of protein haptenation is still limited and mainly derived from studies performed in solution using model nucleophiles. In order to better understand chemical interactions between chemical allergens and the skin, we have investigated the reactivity of phthalic anhydride (PA), a chemical respiratory sensitizer, toward reconstructed human epidermis (RHE).
View Article and Find Full Text PDFChemical modification of epidermal proteins by skin sensitizers is the molecular event which initiates the induction of contact allergy. However, not all chemical skin allergens react directly as haptens with epidermal proteins but need either a chemical (prehaptens) or metabolic (prohaptens) activation step to become reactive. Cinnamyl alcohol has been considered a model prohapten, as this skin sensitizer has no intrinsic reactivity.
View Article and Find Full Text PDFBackground: Methylisothiazolinone (MI) [with methylchloroisothiazolinone (MCI) in a ratio of 1:3, a well-recognized allergenic preservative] was released as an individual preservative in the 2000s for industrial products and in 2005 for cosmetics. The high level of exposure to MI since then has provoked an epidemic of contact allergy to MI, and an increase in MI/MCI allergy. There are questions concerning the MI/MCI cross-reaction pattern.
View Article and Find Full Text PDFAdoption of new legislations and social pressure are pushing toward the development of alternative methods to the use of animals for the assessment of most toxicological end-points including skin sensitization. To that respect, much efforts have been put in the first step of the adverse outcome pathway focusing on chemical interactions taking place between sensitizing chemicals or haptens and epidermal proteins. However, these in chemico approaches have been so far only based on the use of model nucleophiles, amino acids, peptides, or proteins in water/buffer solution and focused mainly on thiol reactivity.
View Article and Find Full Text PDFHigh-resolution magic angle spinning (HR-MAS) is a nuclear magnetic resonance (NMR) technique that enables the characterization of metabolic phenotypes/metabolite profiles of cells, tissues, and organs, under both normal and pathological conditions, without resorting to time-consuming extraction techniques. In this article, we explore a new domain of application of HR-MAS, namely, reconstructed human epidermis (RHE) and the in situ observation of chemical interactions between skin sensitizers and nucleophilic amino acids. First, the preparation, storage, and analysis of RHE were optimized, and this work demonstrated that HR-MAS NMR was well adapted for investigating RHE with spectra of good quality allowing qualitative as well as quantitative studies of metabolites.
View Article and Find Full Text PDF(+) and (-) alpha-methylene-hexahydrobenzofuranone derivatives with a stereochemically pure cis ring junction were used as models of sesquiterpene lactones to study their photoreactivity toward thymidine. After 313 nm irradiation of a deoxygenated acetone solution of lactone models and thymidine, six [2+2] photoadducts were isolated for each enantiomer and fully characterized by a combination of NMR experiments. A common syn regioselectivity and exo stereoselectivity were observed for photoadducts.
View Article and Find Full Text PDFNatural products containing an alpha-methylene-gamma-butyrolactone moiety, mainly of the sesquiterpene type, are widely observed in plants, which upon coming into contact with skin, will induce major skin toxicological side effects or phytodermatitis. Indeed two main dermatological pathologies have been associated with a skin exposure to molecules containing an alpha-methylene-gamma-butyrolactone moiety: allergic contact dermatitis (ACD) and chronic actinic dermatitis (CAD). ACD is an immunologically based disease resulting from modifications of epidermal proteins by sensitizers or haptens.
View Article and Find Full Text PDFThe synthesis of a new alpha-methylene-gamma-butyrolactone-psoralen heterodimer 2 is reported. Its photoantiproliferative activity and skin phototoxicity were compared with that of 5-methoxypsoralen (5-MOP) and another heterodimer 1. Both derivatives show a significant phototoxicity toward malignant cell lines including melanoma cells A375 compared to their intrinsic cytotoxicity in the dark.
View Article and Find Full Text PDFHydrocortisone, cortexolone, hydrocortisone-17-butyrate, and budesonide were oxidized into alpha-ketoaldehydes by air exposure in the presence of Cu(OAc)(2). When free hydroxyl functions were present at position 17, hydrocortisone and cortexolone, the formed oxidation products, were identified as hemiacetal dimeric structures involving the free hydroxyl functions at position 17 and the newly formed aldehydes at position 21. Dimeric structures were established by using 1H913C0 correlations (HSQC and HMBC) and 1H-1H correlations (COSY and ROESY).
View Article and Find Full Text PDF