Amyloid-beta peptide oligomers (AβO) have been considered "primum movens" for a cascade of events that ultimately cause selective neuronal death in Alzheimer's disease (AD). However, initial events triggered by AβO have not been clearly defined. Synaptic (Syn) N-methyl-d-aspartate receptors (NMDAR) are known to activate cAMP response element-binding protein (CREB), a transcriptional factor involved in gene expression related to cell survival, memory formation and synaptic plasticity, whereas activation of extrasynaptic (ESyn) NMDARs was linked to excitotoxic events.
View Article and Find Full Text PDFThis review highlights -omics research in Solanaceae family, with a particular focus on resilient traits. Extensive research has enriched our understanding of Solanaceae genomics and genetics, with historical varietal development mainly focusing on disease resistance and cultivar improvement but shifting the emphasis towards unveiling resilience mechanisms in genebank-preserved germplasm is nowadays crucial. Collecting such information, might help researchers and breeders developing new experimental design, providing an overview of the state of the art of the most advanced approaches for the identification of the genetic elements laying behind resilience.
View Article and Find Full Text PDFThe multifaceted nature of climate change is increasing the urgency to select resilient grapevine varieties, or generate new, fitter cultivars, to withstand a multitude of new challenging conditions. The attainment of this goal is hindered by the limiting pace of traditional breeding approaches, which require decades to result in new selections. On the other hand, marker-assisted breeding has proved useful when it comes to traits governed by one or few genes with great effects on the phenotype, but its efficacy is still restricted for complex traits controlled by many loci.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a neurodegenerative disorder characterized by the progressive deterioration of cognitive functions. Cortical and hippocampal hyperexcitability intervenes in the pathological derangement of brain activity leading to cognitive decline. As key regulators of neuronal excitability, the voltage-gated K channels (K) might play a crucial role in the AD pathophysiology.
View Article and Find Full Text PDFPerennial fruit crops enter dormancy to ensure bud tissue survival during winter. However, a faster phenological advancement caused by global warming exposes bud tissue to a higher risk of spring frost damage. Tissue dehydration and soluble sugars accumulation are connected to freezing tolerance, but non-structural carbohydrates also act as metabolic substrates and signaling molecules.
View Article and Find Full Text PDFThe remodelling of neuronal ionic homeostasis by altered channels and transporters is a critical feature of the Alzheimer's disease (AD) pathogenesis. Different reports converge on the concept that the Na/Ca exchanger (NCX), as one of the main regulators of Na and Ca concentrations and signalling, could exert a neuroprotective role in AD. The activity of NCX has been found to be increased in AD brains, where it seemed to correlate with an increased neuronal survival.
View Article and Find Full Text PDFThe Na/Ca exchanger NCX3 is an important regulator of sodium and calcium homeostasis in oligodendrocyte lineage. To date, no information is available on the effects resulting from prolonged exposure to NCX3 blockers and subsequent drug washout in oligodendroglia. Here, we investigated, by means of biochemical, morphological and functional analyses, the pharmacological effects of the NCX3 inhibitor, the 5-amino-N-butyl-2-(4-ethoxyphenoxy)-benzamide hydrochloride (BED), on NCXs expression and activity, as well as intracellular [Na] and [Ca] levels, during treatment and following drug washout both in human MO3.
View Article and Find Full Text PDFClimate change has become a topic of increasing significance in viticulture, severely challenged by this issue. Average global temperatures are increasing, but frost events, with a large variability depending on geographical locations, have been predicted to be a potential risk for grapevine cultivation. Grape cold hardiness encompasses both midwinter and spring frost hardiness, whereas the avoidance of spring frost damage due to late budbreak is crucial in cold resilience.
View Article and Find Full Text PDFIntracellular calcium concentration ([Ca]) transients in astrocytes represent a highly plastic signaling pathway underlying the communication between neurons and glial cells. However, how this important phenomenon may be compromised in Alzheimer's disease (AD) remains unexplored. Moreover, the involvement of several K channels, including K3.
View Article and Find Full Text PDFThe proteins AtSEOR1 and AtSEOR2 occur as conjugates in the form of filaments in sieve elements of Arabidopsis thaliana. A reduced phytoplasma titre found in infected defective-mutant Atseor1ko plants in previous work raised the speculation that non-conjugated SEOR2 is involved in the phytohormone-mediated suppression of Chrysanthemum Yellows (CY)-phytoplasma infection transmitted by Euscelidius variegatus (Ev). This early and long-lasting SEOR2 impact was revealed in Atseor1ko plants by the lack of detectable phytoplasmas at an early stage of infection (symptomless plants) and a lower phytoplasma titre at a later stage (fully symptomatic plants).
View Article and Find Full Text PDFIntracellular [Na] and [Ca] imbalance significantly contribute to neuro-axonal dysfunctions and maladaptive myelin repair or remyelination failure in chronic inflammatory demyelinating diseases such as multiple sclerosis. Progress in recent years has led to significant advances in understanding how [Ca] signaling network drive degeneration or remyelination of demyelinated axons. The Na/Ca exchangers (NCXs), a transmembrane protein family including three members encoded by ncx1, ncx2, and ncx3 genes, are emerging important regulators of [Na] and [Ca] both in neurons and glial cells.
View Article and Find Full Text PDFBackground: Programmed epigenetic modifications occurring at early postnatal brain developmental stages may have a long-lasting impact on brain function and complex behavior throughout life. Notably, it is now emerging that several genes that undergo perinatal changes in DNA methylation are associated with neuropsychiatric disorders. In this context, we envisaged that epigenetic modifications during the perinatal period may potentially drive essential changes in the genes regulating brain levels of critical neuromodulators such as D-serine and D-aspartate.
View Article and Find Full Text PDFHyperexcitability and alterations in neuronal networks contribute to cognitive impairment in Alzheimer's Disease (AD). Voltage-gated sodium channels (Na), which are crucial for regulating neuronal excitability, have been implicated in AD-related hippocampal hyperactivity and higher incidence of spontaneous non-convulsive seizures. Here, we show by using primary hippocampal neurons exposed to amyloid-β (Aβ) oligomers and from Tg2576 mouse embryos, that the selective upregulation of Na1.
View Article and Find Full Text PDFGlutamate signaling may orchestrate oligodendrocyte precursor cell (OPC) development and myelin regeneration through the activation of glutamate receptors at OPC-neuron synapses. D-Aspartate is a D-amino acid exerting modulatory actions at glutamatergic synapses. Chronic administration of D-Aspartate has been proposed as therapeutic treatment in diseases related to myelin dysfunction and NMDA receptors hypofunction, including schizophrenia and cognitive deficits.
View Article and Find Full Text PDFNeurobiol Aging
June 2017
Astrocyte dysfunction emerges early in Alzheimer's disease (AD) and may contribute to its pathology and progression. Recently, the voltage gated potassium channel K3.4 subunit, which underlies the fast-inactivating K currents, has been recognized to be relevant for AD pathogenesis and is emerging as a new target candidate for AD.
View Article and Find Full Text PDFRecently, the Na(+)/Ca(+2) exchanger NCX1 and the calcium binding protein calretinin have emerged as new molecular effectors of delayed preconditioning in the brain. In the present study, we investigated whether NCX1 and calretinin cooperate within the preconditioned striatum to confer neurons greater resistance to degeneration. Confocal microscopy analysis revealed that NCX1 expression was upregulated in calretinin-positive interneurons in the rat striatum after tolerance induction.
View Article and Find Full Text PDF