Publications by authors named "Valeria Yartseva"

Post-transcriptional mRNA regulation shapes gene expression, yet how cis-elements and mRNA translation interface to regulate mRNA stability is poorly understood. We find that the strength of translation initiation, upstream open reading frame (uORF) content, codon optimality, AU-rich elements, microRNA binding sites, and open reading frame (ORF) length function combinatorially to regulate mRNA stability. Machine-learning analysis identifies ORF length as the most important conserved feature regulating mRNA decay.

View Article and Find Full Text PDF

Rotating cilia at the vertebrate left-right organizer (LRO) generate an asymmetric leftward flow, which is sensed by cells at the left LRO margin. Ciliary activity of the calcium channel Pkd2 is crucial for flow sensing. How this flow signal is further processed and relayed to the laterality-determining Nodal cascade in the left lateral plate mesoderm (LPM) is largely unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are exploring how satellite cells and their progenitors balance the processes of differentiation and self-renewal for effective tissue regeneration, which is not fully understood.
  • Through real-time observation of myogenic transcription factors, they pinpoint the moment when satellite cells decide whether to differentiate or self-renew during muscle regeneration.
  • Single-cell RNA sequencing highlights a diverse population of satellite cells, notably one group with high Notch2 receptor levels, indicating that DLL1 and NOTCH2 signaling is vital for maintaining satellite cell self-renewal during muscle repair.
View Article and Find Full Text PDF

Posttranscriptional regulation plays a crucial role in shaping gene expression. During the maternal-to-zygotic transition (MZT), thousands of maternal transcripts are regulated. However, how different -elements and -factors are integrated to determine mRNA stability remains poorly understood.

View Article and Find Full Text PDF

RNA folding plays a crucial role in RNA function. However, knowledge of the global structure of the transcriptome is limited to cellular systems at steady state, thus hindering the understanding of RNA structure dynamics during biological transitions and how it influences gene function. Here, we characterized mRNA structure dynamics during zebrafish development.

View Article and Find Full Text PDF

Gene expression is extensively regulated at the levels of mRNA stability, localization and translation. However, decoding functional RNA-regulatory features remains a limitation to understanding post-transcriptional regulation in vivo. Here, we developed RNA-element selection assay (RESA), a method that selects RNA elements on the basis of their activity in vivo and uses high-throughput sequencing to provide a quantitative measurement of their regulatory functions at near-nucleotide resolution.

View Article and Find Full Text PDF

Cellular transitions occur at all stages of organismal life from conception to adult regeneration. Changing cellular state involves three main features: activating gene expression necessary to install the new cellular state, modifying the chromatin status to stabilize the new gene expression program, and removing existing gene products to clear out the previous cellular program. The maternal-to-zygotic transition (MZT) is one of the most profound changes in the life of an organism.

View Article and Find Full Text PDF

MicroRNA (miRNA) maturation is regulated by interaction of particular miRNA precursors with specific RNA-binding proteins. Following their biogenesis, mature miRNAs are incorporated into the RNA-induced silencing complex (RISC) where they interact with mRNAs to negatively regulate protein production. However, little is known about how mature miRNAs are regulated at the level of their activity.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are short RNA gene regulators typically produced from primary transcripts that are cleaved by the nuclear microprocessor complex, with the resulting precursor miRNA hairpins exported by exportin 5 and processed by cytoplasmic Dicer to yield two (5p and 3p) miRNAs. Here, we document microprocessor-independent 7-methylguanosine (m(7)G)-capped pre-miRNAs, whose 5' ends coincide with transcription start sites and 3' ends are most likely generated by transcription termination. By establishing a small RNA Cap-seq method that employs the cap-binding protein eIF4E, we identified a group of murine m(7)G-capped pre-miRNAs genome wide.

View Article and Find Full Text PDF