Background: Loss of BIN1 tumor suppressor expression is abundant in human cancer and its frequency exceeds that of genetic alterations, suggesting the role of epigenetic regulators (DNA methylation). BIN1 re-expression in the DU145 prostate cancer cell line after 5-aza-2'-deoxycytidine treatment was recently reported but no methylation of the BIN1 promoter CpG island was found in DU145.
Methods: Methylation-sensitive arbitrarily-primed PCR was used to detect genomic loci abnormally methylated in breast cancer.
Thiopurine drugs are metabolized, in part, by S-methylation catalyzed by thiopurine S-methyltransferase (TPMT). Patients with very low or undetectable TPMT activity are at high risk of severe, potentially fatal hematopoietic toxicity when they are treated with standard doses of thiopurines. As human TPMT activity is controlled by a common genetic polymorphism, it is an excellent candidate for the clinical application of pharmacogenetics.
View Article and Find Full Text PDF