Increased expression of branched-chain amino acid (BCAA) transaminase 1 (BCAT1) often correlates with tumor aggressiveness and drug resistance in cancer. We have recently reported that BCAT1 was overexpressed in a subgroup of T-cell acute lymphoblastic (T-ALL) samples, especially those with NOTCH1 activating mutations. Interestingly, BCAT1-depleted cells showed pronounced sensitivity to DNA-damaging agents such as etoposide; however, how BCAT1 regulates this sensitivity remains uncertain.
View Article and Find Full Text PDFHigh levels of branched-chain amino acid (BCAA) transaminase 1 (BCAT1) have been associated with tumor aggressiveness and drug resistance in several cancer types. Nevertheless, the mechanistic role of BCAT1 in T-cell acute lymphoblastic leukemia (T-ALL) remains uncertain. We provide evidence that Bcat1 was over-expressed following NOTCH1-induced transformation of leukemic progenitors and that NOTCH1 directly controlled BCAT1 expression by binding to a BCAT1 promoter.
View Article and Find Full Text PDFLiquid biopsy has recently emerged as an important tool in clinical practice particularly for lung cancer patients. We retrospectively evaluated cell-free DNA analyses performed at our Institution by next generation sequencing methodology detecting the major classes of genetic alterations. Starting from the graphical representation of chromosomal alterations provided by the analysis software, we developed a support vector machine classifier to automatically classify chromosomal profiles as stable (SCP) or unstable (UCP).
View Article and Find Full Text PDFWhile the genomics era has allowed remarkable advances in understanding the mechanisms driving the biology and pathogenesis of numerous blood cancers, including acute lymphoblastic leukemia (ALL), metabolic studies are still lagging, especially regarding how the metabolism differs between healthy and diseased individuals. T-cell ALL (T-ALL) is an aggressive hematological neoplasm deriving from the malignant transformation of T-cell progenitors characterized by frequent NOTCH1 pathway activation. The aim of our study was to characterize tumor and plasma metabolomes during T-ALL development using a NOTCH1-induced murine T-ALL model (ΔE-NOTCH1).
View Article and Find Full Text PDFAcute leukemias, classified as acute myeloid leukemia and acute lymphoblastic leukemia, represent the most prevalent hematologic tumors in adolescent and young adults. In recent years, new challenges have emerged in order to improve the clinical effectiveness of therapies already in use and reduce their side effects. In particular, in this scenario, metabolic reprogramming plays a key role in tumorigenesis and prognosis, and it contributes to the treatment outcome of acute leukemia.
View Article and Find Full Text PDFGenetic screening of somatic mutations in circulating free DNA (cfDNA) opens up new opportunities for personalized medicine. In this study, we aim to illustrate the implementation of NGS-based liquid biopsy in clinical practice for the detection of somatic alterations in selected genes. Our work is particularly relevant for the diagnosis and treatment of NSCLC.
View Article and Find Full Text PDFNumerous studies have shown that hedgehog inhibitors (iHHs) only partially block the growth of tumor cells, especially in vivo. Leukemia often expands in a nutrient-depleted environment (bone marrow and thymus). In order to identify putative signaling pathways implicated in the adaptive response to metabolically adverse conditions, we executed quantitative phospho-proteomics in T-cell acute lymphoblastic leukemia (T-ALL) cells subjected to nutrient-depleted conditions (serum starvation).
View Article and Find Full Text PDFMulti-agent combination chemotherapy can be curative in acute lymphoblastic leukemia (ALL). Still, patients with primary refractory disease or with relapsed leukemia have a very poor prognosis. Here we integrate an in-depth dissection of the mutational landscape across diagnostic and relapsed pediatric and adult ALL samples with genome-wide CRISPR screen analysis of gene-drug interactions across seven ALL chemotherapy drugs.
View Article and Find Full Text PDFNotwithstanding intensified therapy, a considerable fraction of T-cell acute lymphoblastic leukemia (T-ALL) patients face a dismal prognosis due to primary resistance to treatment and relapse, raising the need for more efficient and targeted therapies. Hedgehog (HH) signaling is a major developmental pathway frequently deregulated in cancer, for which a role in T-ALL is emerging. Mounting evidence suggests that ligand-independent activation of HH pathway occurs in cancer including T-ALL, emphasizing the necessity of dissecting the complex interplay between HH and other signaling pathways regulating activation.
View Article and Find Full Text PDFT-cell acute lymphoblastic leukemia (T-ALL) is a highly malignant pediatric leukemia, where few therapeutic options are available for patients which relapse. We find that therapeutic targeting of GLI transcription factors by GANT-61 is particularly effective against NOTCH1 unmutated T-ALL cells. Investigation of the functional role of GLI1 disclosed that it contributes to T-ALL cell proliferation, survival, and dissemination through the modulation of AKT and CXCR4 signaling pathways.
View Article and Find Full Text PDFT-cell acute lymphoblastic leukemia (T-ALL) is a rare, aggressive disease arising from T-cell precursors. NOTCH1 plays an important role both in T-cell development and leukemia progression, and more than 60% of human T-ALLs harbor mutations in components of the NOTCH1 signaling pathway, leading to deregulated cell growth and contributing to cell transformation. Besides multiple NOTCH1 target genes, microRNAs have also been shown to regulate T-ALL initiation and progression.
View Article and Find Full Text PDF-translocated T-lineage acute lymphoblastic leukemia (T-ALL) is a rare subgroup of T-ALL associated with deletions, inactivation, and absence of or mutations. This subtype of T-ALL has been associated with induction failure and aggressive disease. Identification of drug targets and mechanistic insights for this disease are still limited.
View Article and Find Full Text PDFThe NOTCH signaling pathway is a conserved signaling cascade that regulates many aspects of development and homeostasis in multiple organ systems. Aberrant activity of this signaling pathway is linked to the initiation and progression of several hematological malignancies, exemplified by T-cell acute lymphoblastic leukemia (T-ALL). Interestingly, frequent non-mutational activation of NOTCH1 signaling has recently been demonstrated in B-cell chronic lymphocytic leukemia (B-CLL), significantly extending the pathogenic significance of this pathway in B-CLL.
View Article and Find Full Text PDFLoss-of-function mutations and deletions in Wilms tumor 1 () gene are present in approximately 10% of T-cell acute lymphoblastic leukemia. Clinically, mutations are enriched in relapsed series and are associated to inferior relapse-free survival in thymic T-cell acute lymphoblastic leukemia cases. Here we demonstrate that WT1 plays a critical role in the response to DNA damage in T-cell leukemia.
View Article and Find Full Text PDFCalcineurin (Cn) is a calcium activated protein phosphatase involved in many aspects of normal T cell physiology, however the role of Cn and/or its downstream targets in leukemogenesis are still ill-defined. In order to identify putative downstream targets/effectors involved in the pro-oncogenic activity of Cn in T-cell acute lymphoblastic leukemia (T-ALL) we used tandem affinity chromatography, followed by mass spectrometry to purify novel Cn-interacting partners. We found the Cn-interacting proteins to be part of numerous cellular signaling pathways including eIF2 signaling and mTOR signaling.
View Article and Find Full Text PDFActivating mutations in NOTCH1 are common in T cell acute lymphoblastic leukemia (T-ALL). Here we identify glutaminolysis as a critical pathway for leukemia cell growth downstream of NOTCH1 and a key determinant of the response to anti-NOTCH1 therapies in vivo. Mechanistically, inhibition of NOTCH1 signaling in T-ALL induces a metabolic shutdown, with prominent inhibition of glutaminolysis and triggers autophagy as a salvage pathway supporting leukemia cell metabolism.
View Article and Find Full Text PDFSomatic mutations in IDH1/IDH2 and TET2 result in impaired TET2-mediated conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). The observation that WT1 inactivating mutations anticorrelate with TET2/IDH1/IDH2 mutations in acute myeloid leukemia (AML) led us to hypothesize that WT1 mutations may impact TET2 function. WT1 mutant AML patients have reduced 5hmC levels similar to TET2/IDH1/IDH2 mutant AML.
View Article and Find Full Text PDFGlucocorticoid resistance is a major driver of therapeutic failure in T cell acute lymphoblastic leukemia (T-ALL). Here, we identify the AKT1 kinase as a major negative regulator of the NR3C1 glucocorticoid receptor protein activity driving glucocorticoid resistance in T-ALL. Mechanistically, AKT1 impairs glucocorticoid-induced gene expression by direct phosphorylation of NR3C1 at position S134 and blocking glucocorticoid-induced NR3C1 translocation to the nucleus.
View Article and Find Full Text PDFT-cell acute lymphoblastic leukemia/lymphoma (T-ALL) is characterized by aberrant activation of NOTCH1 in over 60% of T-ALL cases. The high prevalence of activating NOTCH1 mutations highlights the critical role of NOTCH signaling in the pathogenesis of this disease and has prompted the development of therapeutic approaches targeting the NOTCH signaling pathway. Small molecule gamma secretase inhibitors (GSIs) can effectively inhibit oncogenic NOTCH1 and are in clinical testing for the treatment of T-ALL.
View Article and Find Full Text PDFAcute lymphoblastic leukemia (ALL) is an aggressive hematological tumor resulting from the malignant transformation of lymphoid progenitors. Despite intensive chemotherapy, 20% of pediatric patients and over 50% of adult patients with ALL do not achieve a complete remission or relapse after intensified chemotherapy, making disease relapse and resistance to therapy the most substantial challenge in the treatment of this disease. Using whole-exome sequencing, we identify mutations in the cytosolic 5'-nucleotidase II gene (NT5C2), which encodes a 5'-nucleotidase enzyme that is responsible for the inactivation of nucleoside-analog chemotherapy drugs, in 20/103 (19%) relapse T cell ALLs and 1/35 (3%) relapse B-precursor ALLs.
View Article and Find Full Text PDFConstitutive phosphoinositide 3-kinase (PI3K)/Akt activation is common in T cell acute lymphoblastic leukemia (T-ALL). Although four distinct class I PI3K isoforms (α, β, γ, δ) could participate in T-ALL pathogenesis, none has been implicated in this process. We report that in the absence of PTEN phosphatase tumor suppressor function, PI3Kγ or PI3Kδ alone can support leukemogenesis, whereas inactivation of both isoforms suppressed tumor formation.
View Article and Find Full Text PDFEarly immature T cell acute lymphoblastic leukemias (T-ALLs) account for ~5-10% of pediatric T-ALLs and are associated with poor prognosis. However, the genetic defects that drive the biology of these tumors remain largely unknown. In this study, analysis of microarray gene expression signatures in adult T-ALL demonstrated a high prevalence of early immature leukemias and revealed a close relationship between these tumors and myeloid leukemias.
View Article and Find Full Text PDFThe TLX1 oncogene (encoding the transcription factor T cell leukemia homeobox protein-1) has a major role in the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL). However, the specific mechanisms of T cell transformation downstream of TLX1 remain to be elucidated. Here we show that transgenic expression of human TLX1 in mice induces T-ALL with frequent deletions and mutations in Bcl11b (encoding B cell leukemia/lymphoma-11B) and identify the presence of recurrent mutations and deletions in BCL11B in 16% of human T-ALLs.
View Article and Find Full Text PDFPurpose: To identify children with T-cell acute lymphoblastic leukemia (T-ALL) at high risk of induction chemotherapy failure by using DNA copy number analysis of leukemic cells collected at diagnosis.
Patients And Methods: Array comparative genomic hybridization (CGH) was performed on genomic DNA extracted from diagnostic lymphoblasts from 47 children with T-ALL treated on Children's Oncology Group Study P9404 or Dana-Farber Cancer Institute Protocol 00-01. These samples represented nine patients who did not achieve an initial complete remission, 13 who relapsed, and 25 who became long-term, event-free survivors.
The molecular mechanisms involved in disease progression and relapse in T-cell acute lymphoblastic leukemia (T-ALL) are poorly understood. We used single nucleotide polymorphism array analysis to analyze paired diagnostic and relapsed T-ALL samples to identify recurrent genetic alterations in T-ALL. This analysis showed that diagnosis and relapsed cases have common genetic alterations, but also that relapsed samples frequently lose chromosomal markers present at diagnosis, suggesting that relapsed T-ALL emerges from an ancestral clone different from the major leukemic population at diagnosis.
View Article and Find Full Text PDF