Publications by authors named "Valeria Spelta"

Ischemic pain--examples include the chest pain of a heart attack and the leg pain of a 30 s sprint--occurs when muscle gets too little oxygen for its metabolic need. Lactic acid cannot act alone to trigger ischemic pain because the pH change is so small. Here, we show that another compound released from ischemic muscle, adenosine tri-phosphate (ATP), works together with acid by increasing the pH sensitivity of acid-sensing ion channel number 3 (ASIC3), the molecule used by sensory neurons to detect lactic acidosis.

View Article and Find Full Text PDF

1. Heteromeric P2X2/3 receptors are much more sensitive than homomeric P2X2 receptors to alphabeta-methylene-ATP, and this ATP analogue is widely used to discriminate the two receptors on sensory neurons and other cells. 2.

View Article and Find Full Text PDF

ATP-gated ionotropic receptors (P2X receptors) are distributed widely in the nervous system. For example, a hetero-oligomeric receptor containing both P2X2 and P2X3 subunits is involved in primary afferent sensation. Each subunit has two membrane-spanning domains.

View Article and Find Full Text PDF

1 ATP-gated ion channels (P2X receptors) contain two hydrophobic segments that are presumed to span the plasma membrane (TM1 and TM2). Pairs of cysteines were introduced by mutagenesis into the rat P2X(2) receptor, one in TM1 one in TM2, at positions where single substitutions have previously been shown to confer sensitivity to methanethiosulfonates. The receptors were expressed in HEK293 cells; interactions between the cysteines were sought by measuring the effects on ionic currents of dithiothreitol and methanethiosulfonates.

View Article and Find Full Text PDF

1. Currents through heteromeric P2X(2/3) receptors were evoked by applying alpha,beta-methylene-ATP to human embryonic kidney cells transfected with cDNAs encoding the P2X(2) and P2X(3) subunits. The concentration of alpha,beta-methylene-ATP were < or =30 microM because higher concentrations can activate homomeric P2X(2) receptors.

View Article and Find Full Text PDF