Publications by authors named "Valeria Saggio"

Artificial atoms in solids are leading candidates for quantum networks, scalable quantum computing, and sensing, as they combine long-lived spins with mobile photonic qubits. Recently, silicon has emerged as a promising host material where artificial atoms with long spin coherence times and emission into the telecommunications band can be controllably fabricated. This field leverages the maturity of silicon photonics to embed artificial atoms into the world's most advanced microelectronics and photonics platform.

View Article and Find Full Text PDF

Many future quantum technologies rely on the generation of entangled states. Quantum devices will require verification of their operation below some error threshold, but the reliable detection of quantum entanglement remains a considerable challenge for large-scale quantum systems. Well-established techniques for this task rely on the measurement of expectation values of entanglement witnesses, which however require many measurements settings to be extracted.

View Article and Find Full Text PDF