The family of Eph receptor tyrosine kinases and their membrane bound ligands, the ephrins, are involved in a wide variety of morphogenic processes during embryonic development and adult tissue homeostasis. Receptor-ligand interaction requires direct cell-cell contact and results in forward and reverse signaling originating from the receptor and ligand, respectively. We have previously shown that EphB4 and ephrinB2 are differentially expressed during the development of the adult mammary parenchyma.
View Article and Find Full Text PDFEph receptor tyrosine kinases and their membrane-bound ephrin ligands play key roles during morphogenesis and adult tissue homeostasis. Receptor-ligand interactions result in forward and reverse signalling from the receptor and ligand respectively. To delineate the role(s) of forward and reverse signalling in mammary gland biology we have established transgenic mice exhibiting mammary epithelial-specific overexpression of either the native ephrin-B2 or a dominant negative ephrin-B2 mutant incapable of reverse signalling.
View Article and Find Full Text PDFGlycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) is abundant in serum and has a well-characterized biochemistry; however, its physiological role is completely unknown. Previous investigations into GPI-PLD have focused on the adult animal or on in vitro systems and a putative role in development has been neither proposed nor investigated. We describe the first evidence of GPI-PLD expression during mouse embryonic ossification.
View Article and Find Full Text PDFWe have established transgenic mice over-expressing the EphB4 receptor tyrosine kinase in the kidney. The EphB4 protein was localised to the developing tubular system of both control and transgenic newborn mice. In transgenic adults, transgene expression persisted in the proximal tubules and the Bowman's capsules, structures, which were not stained in control kidneys.
View Article and Find Full Text PDFMembers of the Eph family of receptor tyrosine kinase have been implicated in cell-cell communication and tissue integrity during embryogenesis. We have previously demonstrated cell type specific and hormone dependent EphB4 expression in the mouse mammary parenchyma suggesting involvement in the homeostasis of this organ. Since disruption of tissue organization is crucial for metastatic dissemination, we have investigated the expression of EphB4 during carcinogenesis of the human breast.
View Article and Find Full Text PDFWe have previously documented the cell-type-specific and hormone-dependent expression of the EphB4 receptor in the mouse mammary gland. To investigate its role in the biology of the mammary gland, we have established transgenic mice bearing the EphB4 receptor under the control of the MMTV-LTR promoter, which represents the first transgenic mouse model to investigate the effect(s) of unscheduled expression of EphB4 in adult organisms. Transgene expression in the mammary epithelium was induced at puberty, increased during pregnancy, culminated at early lactation and persisted until day three of post-lactational involution.
View Article and Find Full Text PDF