Insect flight is a complex trait involved in different behaviors, from the search for sexual partners, food, or breeding sites. Many studies have postulated the adaptive advantages of certain morphological traits in relation to increased flight capacity, such as low values of wing loading or high values of wing:thorax ratio and wing-aspect ratio. However, few studies have evaluated the relationship between variables related to flight and morphological traits in Drosophila.
View Article and Find Full Text PDFBody size is a complex character associated to several fitness related traits that vary within and between species as a consequence of environmental and genetic factors. Latitudinal and altitudinal clines for different morphological traits have been described in several species of Drosophila and previous work identified genomic regions associated with such variation in D. melanogaster.
View Article and Find Full Text PDFTo predict the response of complex morphological structures to selection it is necessary to know how the covariation among its different parts is organized. Two key features of covariation are modularity and integration. The Drosophila wing is currently considered a fully integrated structure.
View Article and Find Full Text PDFUnderstanding the genetic architecture of any quantitative trait requires identifying the genes involved in its expression in different environmental conditions. This goal can be achieved by mutagenesis screens in genetically tractable model organisms such as Drosophila melanogaster. Temperature during ontogenesis is an important environmental factor affecting development and phenotypic variation in holometabolous insects.
View Article and Find Full Text PDFBackground: Understanding the genetic architecture of ecologically relevant adaptive traits requires the contribution of developmental and evolutionary biology. The time to reach the age of reproduction is a complex life history trait commonly known as developmental time. In particular, in holometabolous insects that occupy ephemeral habitats, like fruit flies, the impact of developmental time on fitness is further exaggerated.
View Article and Find Full Text PDF