Native microbial consortia have been proposed for biological wastewater treatment, but their diversity and function remain poorly understood. This study investigated three native microalgae-bacteria consortia collected from the Amazon, Highlands, and Galapagos regions of Ecuador to assess their metagenomes and wastewater remediation potential. The consortia were evaluated for 12 days under light (LC) and continuous dark conditions (CDC) to measure their capacity for nutrient and organic matter removal from synthetic wastewater (SWW).
View Article and Find Full Text PDFPoly- and perfluoroalkyl substances (PFASs) are commonly used in various industries and everyday products, including clothing, electronics, furniture, paints, and many others. PFASs are primarily found in aquatic environments, but also present in soil, air and plants, making them one of the most important and dangerous pollutants of the natural environment. PFASs bioaccumulate in living organisms and are especially dangerous to aquatic and semi-aquatic animals.
View Article and Find Full Text PDFIn low-middle income countries (LMIC), wastewater treatment using native microalgal-bacterial consortia has emerged as a cost-effective and technologically-accessible remediation strategy. This study evaluated the effectiveness of six microalgal-bacterial consortia (MBC) from the Ecuadorian Amazon in removing organic matter and nutrients from non-sterilized domestic wastewater (NSWW) and sterilized domestic wastewater (SWW) samples. Microalgal-bacterial consortia growth, in NSWW was, on average, six times higher than in SWW.
View Article and Find Full Text PDFThis study aimed to compare microscopic counting, culture, and quantitative or real-time PCR (qPCR) to quantify sulfate-reducing bacteria in environmental and engineered sludge samples. Four sets of primers that amplified the and gene encoding the two key enzymes of the sulfate-reduction pathway were initially tested. qPCR standard curves were constructed using genomic DNA from an SRB suspension and dilutions of an enriched sulfate-reducing sludge.
View Article and Find Full Text PDFRhyacoglanis pulcher is a rare Neotropical rheophilic bumblebee catfish known only from the type locality in the Cis-Andean Amazon region, Ecuador, and the type-species of the genus. So far, the three syntypes collected in 1880 were the only specimens unambiguously associated to the name R. pulcher available in scientific collections.
View Article and Find Full Text PDFClimate change and air pollution are critical challenges that humanity is currently facing. Understanding the sources of emissions released into the atmosphere is of great importance to evaluate the local footprint, the impacts of human activities, and the opportunities to develop and implement solutions to mitigate emissions and adapt to climate change particularly in vulnerable places like the Galapagos Islands. In this study, we present an anthropogenic emissions inventory for Santa Cruz, San Cristobal, and Isabela Islands in which emissions were spatially mapped for greenhouse gasses (GHGs) and primary pollutants (PP).
View Article and Find Full Text PDFInt J Environ Res Public Health
January 2022
Biological treatment using sulfate-reducing bacteria (SRB) is a promising approach to remediate acid rock drainage (ARD). Our purpose was to assess the performance of a sequential system consisting of a limestone bed filter followed by a sulfate-reducing bioreactor treating synthetic ARD for 375 days and to evaluate changes in microbial composition. The treatment system was effective in increasing the pH of the ARD from 2.
View Article and Find Full Text PDFWhile seawater desalination technologies can improve drinking water supply, they can also generate significant environmental externalities. A choice experiment was implemented to investigate household preferences for potential trade-offs between improved water services and environmental impacts from seawater desalination in the Galápagos Islands. Our results indicate that households are willing to pay for water quality improvements, and for protection of coastal ecosystems and marine organisms.
View Article and Find Full Text PDFOne major health issue is the microbial and chemical contamination of natural freshwater, particularly in Latin American countries, such as Ecuador, where it is still lacking wastewater treatment plants. This study analyzed the water quality in twelve rivers of Ecuador (Coastal, Andean, and Amazonian regions). All rivers showed levels of E.
View Article and Find Full Text PDFSulphate reducing bacteria (SRB) offer promise for the treatment of mine waste due to their effectiveness removing toxic heavy metals as highly insoluble metal sulphides and their ability to generate alkalinity. The main objective of this study was to develop a treatment composed of a sulphate-reducing bioreactor with a limestone precolumn for the removal of Cu(II) from a synthetic ARD. The purpose of the limestone column was to increase the pH values and decrease the level of Cu in the effluent to prevent SRB inhibition.
View Article and Find Full Text PDFBioactive plant-derived molecules have emerged as therapeutic alternatives in the fight against the COVID-19 pandemic. In this investigation, principal bioactive compounds of the herbal infusion "horchata" from Ecuador were studied as potential novel inhibitors of the SARS-CoV-2 virus. The chemical composition of horchata was determined through a HPLC-DAD/ESI-MS and GC-MS analysis while the inhibitory potential of the compounds on SARS-CoV-2 was determined by a computational prediction using various strategies, such as molecular docking and molecular dynamics simulations.
View Article and Find Full Text PDFThe human ingestion of mercury (Hg) from sea food is of big concern worldwide due to adverse health effects, and more specifically if shark consumption constitutes a regular part of the human diet. In this study, the total mercury (THg) concentration in muscle tissue were determined in six sympatric shark species found in a fishing vessel seized in the Galapagos Marine Reserve in 2017. The THg concentrations in shark muscle samples (n = 73) varied from 0.
View Article and Find Full Text PDFChemical elements, which are present in drinking water, could vary due to water sources, treatment processes or even the plumbing materials. Most of these elements do not represent a threat, while others, such as heavy metals, have been proven to cause harmful effects over human and aquatic wildlife. In this study, the quality of drinking water in three cities in Ecuador, Quito, Ibarra and Guayaquil was assessed through a multielement analysis and the heavy metal pollution index (HPI).
View Article and Find Full Text PDFTwo specimens of Micromyzon akamai, an eyeless and miniaturized species previously known only from the deep channels of the eastern Amazon basin in Brazil, are reported from the Curaray River, a tributary of the Napo River in Ecuador. The new specimens are the first records of Micromyzon in the headwaters of the Amazon River and the first records of M. akamai outside Brazil.
View Article and Find Full Text PDFContamination of natural water sources is one of the main health problems worldwide, which could be caused by chemicals, metals, or microbial agents. This study aimed to analyze the quality of 18 rivers located in Quito, the capital province of Pichincha, Ecuador, through physico-chemical and microbial parameters. The and total coliforms assessments were performed by a counting procedure in growth media.
View Article and Find Full Text PDFInt J Hyg Environ Health
July 2020
Achievement of United Nations Sustainable Development Goal 6.1 centers on the availability of a safely managed drinking water source for all. However, meeting the criteria for this goal is challenging on island systems and elsewhere with limited freshwater supplies.
View Article and Find Full Text PDFSci Total Environ
March 2020
Currently, several concerns have been raised over metal contamination in the upper Amazon basin. Rivers that flow from the high Andes to the lowland Amazon are threatened by anthropogenic activities, which may, in turn, lead to increased metal concentrations in both water and sediments. In the present study, the impacts of multiple metal contamination sources in these ecosystems were identified.
View Article and Find Full Text PDFAnthropogenic threat maps are commonly used as a surrogate for the ecological integrity of rivers in freshwater conservation, but a clearer understanding of their relationships is required to develop proper management plans at large scales. Here, we developed and validated empirical models that link the ecological integrity of rivers to threat maps in a large, heterogeneous and biodiverse Andean-Amazon watershed. Through fieldwork, we recorded data on aquatic invertebrate community composition, habitat quality, and physical-chemical parameters to calculate the ecological integrity of 140 streams/rivers across the basin.
View Article and Find Full Text PDFThe unregulated oil exploitation in the Northern Ecuadorian Amazon Region (NEAR), mainly from 1964 to the 90's, led to toxic compounds largely released into the environment. A large majority of people living in the Amazon region have no access to drinking water distribution systems and collects water from rain, wells or small streams. The concentrations of major ions, trace elements, PAHs (polycyclic aromatic hydrocarbons) and BTEX (benzene, toluene, ethylbenzene, xylenes) were analyzed in different water sources to evaluate the impacts of oil extraction and refining.
View Article and Find Full Text PDFThe aim of this project was to study the feasibility of utilizing native microalgae for the removal of nitrogen and phosphorus, as a potential secondary wastewater treatment process in Ecuador. Agitation and aeration batch experiments were conducted using synthetic secondary wastewater effluent, to determine nitrogen and phosphorus removal efficiencies by a native Ecuadorian microalgal strain. Experimental results indicated that microalgal cultures could successfully remove nitrogen and phosphorus.
View Article and Find Full Text PDFPerfluorooctane sulfonate (PFOS) and related perfluoroalkyl and polyfluoroalkyl substances (PFASs) are emerging contaminants that have been widely applied in consumer and industrial applications for decades. However, PFOS has raised public concern due to its high bioaccumulative character, environmental persistence, and toxicity. Shorter PFASs such as perfluorobutane sulfonate (PFBS) and polyfluoroalkyl compounds have been proposed as alternatives to PFOS but it is unclear whether these fluorinated substances pose a risk for public health and the environment.
View Article and Find Full Text PDFContaminants can behave as toxicants, when toxic effects are observed in organisms, as well as habitat disturbers and fragmentors, by triggering avoidance responses and generating less- or uninhabited zones. Drift by stream insects has long been considered a mechanism to avoid contamination by moving to most favorable habitats. Given that exploration and transportation of crude oil represent a threat for surrounding ecosystems, the key goal of the present study was to assess the ability of autochthonous groups of aquatic insects from the Ecuadorian paramo streams to avoid by drift different concentrations of polycyclic aromatic hydrocarbons (PAH) contained in the soluble fraction of locally transported crude oil.
View Article and Find Full Text PDFSeveral oil spills due to ruptures in the pipeline oil systems have occurred at the Andean paramo. A sample of this crude oil was mixed with water from a nearby Andean lagoon and the toxicity of the soluble fraction was assessed through lethal and avoidance assays with a locally occurring copepod (Boeckella occidentalis intermedia). The integration of mortality and avoidance aimed at predicting the immediate decline of copepod populations facing an oil leakage.
View Article and Find Full Text PDFCopper is an essential element, however, this heavy metal is an inhibitor of microbial activity at relatively low concentrations. The objective of this study was to evaluate the inhibitory effect of copper(II) towards various microbial trophic groups responsible for the removal of organic constituents and nutrients in wastewater treatment processes. The results of the batch bioassays indicated that copper(II) caused severe inhibition of key microbial populations in wastewater treatment systems.
View Article and Find Full Text PDF