Background: SPG18 is caused by mutations in the endoplasmic reticulum lipid raft associated 2 (ERLIN2) gene. Autosomal recessive (AR) mutations are usually associated with complicated hereditary spastic paraplegia (HSP), while autosomal dominant (AD) mutations use to cause pure SPG18.
Aim: To define the variegate clinical spectrum of the SPG18 and to evaluate a dominant negative effect of erlin2 (encoded by ERLIN2) on oligomerization as causing differences between AR and AD phenotypes.
The carbonic anhydrase isoform IX (hCAIX) is one of the main players in extracellular tumor pH regulation, and it is known to be overexpressed in breast cancer and other common tumors. hCA IX supports the growth and survival of tumor cells, and its expression is correlated with metastasis and resistance to therapies, making it an interesting biomarker for diagnosis and therapy. The aim of this work deals with the development of an MRI imaging probe able to target the extracellular non-catalytic proteoglycan-like (PG) domain of CAIX.
View Article and Find Full Text PDFSevere corneal damage leads to complete vision loss, thereby affecting life quality and impinging heavily on the healthcare system. Current clinical approaches to manage corneal wounds suffer from severe drawbacks, thus requiring the development of alternative strategies. Of late, mesenchymal stromal/stem cell (MSC)-derived extracellular vesicles (EVs) have become a promising tool in the ophthalmic field.
View Article and Find Full Text PDFOcular chemical and thermal burns are frequent causes of hospitalization and require immediate interventions and care. Various surgical and pharmacological treatment strategies are employed according to damage severity. Controlling inflammation and neovascularization while promoting normal ocular surface anatomy and function restoration is the principal aim.
View Article and Find Full Text PDFA one-pot, high-yield procedure for synthesizing lanthionine-containing peptides was developed. It relies on the S-alkylation of cysteine-containing peptides with chiral cyclic sulfamidates. The key feature of this approach is the use of mild reaction conditions (only activated molecular sieves are employed as the catalyst), leading to good chemoselectivity and excellent stereochemical control.
View Article and Find Full Text PDFAn efficient and rapid procedure for synthesizing S-linked glycopeptides is reported. The approach uses activated molecular sieves as a base to promote the selective S-alkylation of readily prepared cysteine-containing peptides, upon reaction of appropriate glycosyl halides. Considering the very mild conditions employed, the chemoselective linkage of the electrophilic sugar with a peptide sulfhydryl group occurred in satisfactory yield, allowing the incorporation of mono and disaccharide moieties.
View Article and Find Full Text PDFInherited disorders characterized by motor neuron loss and muscle weakness are genetically heterogeneous. The recent identification of mutations in the gene encoding transient receptor potential vanilloid 4 (TRPV4) in distal spinal muscular atrophy (dSMA) prompted us to screen for TRPV4 mutations in a small group of children with compatible phenotype. In a girl with dSMA and vocal cord paralysis, we detected a new variant (p.
View Article and Find Full Text PDFTwo novel Gd-based contrast agents (CAs) for the molecular imaging of matrix metalloproteinases (MMPs) were synthetized and characterized in vitro and in vivo. These probes were based on the PLG*LWAR peptide sequence, known to be hydrolyzed between Gly and Leu by a broad panel of MMPs. A Gd-DOTA chelate was conjugated to the N-terminal position through an amide bond, either directly to proline (compd Gd-K11) or through a hydrophilic spacer (compd Gd-K11N).
View Article and Find Full Text PDFMurine melanoma B16 cells display on the extracellular side of the plasma membrane a large number of reactive protein thiols (exofacial protein thiols, EPTs). These EPTs can be chemically labeled with Gd-DO3A-PDP, a Gd(III)-based MRI contrast agent bearing a 2-pyridinedithio chemical function for the recognition of EPTs. Uptake of gadolinium up to 10(9) Gd atoms per cell can be achieved.
View Article and Find Full Text PDFA novel class of paramagnetic liposome-based systems acting as dual T(1) and CEST (1)H-MRI contrast agents is described. The vesicles contain a shift reagent in the aqueous core and a Gd-complex on the external surface conjugated through a biodegradable linker. As such, the probe can generate T(1) contrast only, but after the cleavage and removal of the Gd-coating, the CEST contrast is switched on.
View Article and Find Full Text PDFFour novel MRI Gd(III)-based probes have been synthesized and evaluated for their labeling properties on cultured cell lines K562, C6, and B16. The labeling strategy relies upon the fact that cells display a large number of reactive exofacial protein thiols (EPTs) that can be exploited as anchorage points for suitably activated MRI probes. The probes are composed of a Gd(III) chelate (based on either DO3A or DTPA) connected through a flexible linker to the 2-pyridyldithio chemical function for binding to EPTs.
View Article and Find Full Text PDFCells display on the outer surface of the plasma membrane a large number of protein thiols that can be reversibly labelled with suitably designed Gd(III)-based contrast agents for cell tracking by MRI.
View Article and Find Full Text PDFKRIT1 is a disease gene responsible for Cerebral Cavernous Malformations (CCM). It encodes for a protein containing distinct protein-protein interaction domains, including three NPXY/F motifs and a FERM domain. Previously, we isolated KRIT1B, an isoform characterized by the alternative splicing of the 15th coding exon and suspected to cause CCM when abnormally expressed.
View Article and Find Full Text PDFRecent mutagenic and molecular modelling studies suggested a role for glycine 84 in the putative oxyanion loop of the carboxylesterase EST2 from Alicyclobacillus acidocaldarius. A 114 times decrease of the esterase catalytic activity of the G84S mutant was observed, without changes in the thermal stability. The recently solved three-dimensional (3D) structure of EST2 in complex with a HEPES molecule permitted to demonstrate that G84 (together with G83 and A156) is involved in the stabilization of the oxyanion through a hydrogen bond from its main chain NH group.
View Article and Find Full Text PDFThe X-ray crystal structures of 5-amino-1,3,4-thiadiazole-2-sulfonamide (the acetazolamide precursor) and 5-(4-amino-3-chloro-5-fluorophenylsulfonamido)-1,3,4-thiadiazole-2-sulfonamide in complex with the human isozyme II of carbonic anhydrase (CA, EC 4.2.1.
View Article and Find Full Text PDFStructure for the adduct of carbonic anhydrase II with 1-N-(4-sulfamoylphenyl-ethyl)-2,4,6-trimethylpyridinium perchlorate, a membrane-impermeant antitumor sulfonamide, is reported. The phenylethyl moiety fills the active site, making van der Waals interactions with side chains of Gln192, Val121, Phe131, Leu198, Thr200. The 2,4,6-trimethylpyridinium functionality is at van der Waals distance from the aliphatic chain of Ile91 being involved in strong offset face-to-face stacking with Phe131.
View Article and Find Full Text PDFThe antiepileptic drug zonisamide was considered to act as a weak inhibitor of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.
View Article and Find Full Text PDFN-1-(4-Sulfamoylphenyl)-N-4-pentafluorophenyl-thiosemicarbazide was prepared by the reaction of 4-isothiocyanato-benzenesulfonamide with pentafluorophenyl hydrazine, and proved to be an effective inhibitor of several isozymes of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.
View Article and Find Full Text PDFEsterase 2 (EST2) from the thermophilic eubacterium Alicyclobacillus acidocaldarius is a thermostable serine hydrolase belonging to the H group of the esterase/lipase family. This enzyme hydrolyzes monoacylesters of different acyl-chain length and various compounds with industrial interest. EST2 displays an optimal temperature at 70 degrees C and maximal activity with pNP-esters having acyl-chain bearing from six to eight carbon atoms.
View Article and Find Full Text PDFThe reaction mechanism of the esterase 2 (EST2) from Alicyclobacillus acidocaldarius was studied at the kinetic and structural level to shed light on the mechanism of activity and substrate specificity increase previously observed in its double mutant M211S/R215L. In particular, the values of kinetic constants (k1, k(-1), k2, and k3) along with activation energies (E1, E(-1), E2, and E3) were measured for wild type and mutant enzyme. The previously suggested substrate-induced switch in the reaction mechanism from kcat=k3 with a short acyl chain substrate (p-nitrophenyl hexanoate) to kcat=k2 with a long acyl chain substrate (p-nitrophenyl dodecanoate) was validated.
View Article and Find Full Text PDFPeptide nucleic acids (PNAs) are oligonucleotide analogues in which the sugar-phosphate backbone has been replaced by a pseudopeptide skeleton. They bind DNA and RNA with high specificity and selectivity, leading to PNA-RNA and PNA-DNA hybrids more stable than the corresponding nucleic acid complexes. The binding affinity and selectivity of PNAs for nucleic acids can be modified by the introduction of stereogenic centers (such as D-Lys-based units) into the PNA backbone.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
October 2003
The acetyl-esterase Aes from Escherichia coli, which belongs to the HSL group of the esterase/lipase superfamily, has been crystallized by the hanging-drop vapour-diffusion method using polyethylene glycol 8000 as a precipitant and magnesium chloride as an additive. Crystals belong to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 110.0, b = 190.
View Article and Find Full Text PDF