Publications by authors named "Valeria Mazzone"

Article Synopsis
  • - Cancer is a significant global health issue, leading to ongoing research into effective treatments, particularly focusing on natural compounds from plants that may help in prevention and therapy due to their pharmacological benefits.
  • - The review evaluates the therapeutic potential of five natural compounds—apigenin, quercetin, piperine, curcumin, and resveratrol—highlighting their anticancer mechanisms, roles in personalized cancer care, and advantages like low toxicity and compatibility with standard treatments.
  • - It emphasizes the need for innovative delivery systems and personalized approaches to enhance the effectiveness of these compounds, ultimately supporting a multidisciplinary strategy for improving cancer management and patient outcomes.
View Article and Find Full Text PDF

Cells that are exposed to harmful genetic damage, either from internal or external sources, may undergo senescence if they are unable to repair their DNA. Senescence, characterized by a state of irreversible growth arrest, can spread to neighboring cells through a process known as the senescence-associated secretory phenotype (SASP). This phenomenon contributes to both aging and the development of cancer.

View Article and Find Full Text PDF

Warm-blooded animals may have on healthy skin, but changes in the skin microenvironment or host defences induce this opportunistic commensal to become pathogenic. Malassezia infections in humans and animals are commonly treated with azole antifungals. Fungistatic treatments, together with their long-term use, contribute to the selection and the establishment of drug-resistant fungi.

View Article and Find Full Text PDF

Fungi are exposed to various environmental variables during their life cycle, including changes in CO concentration. CO has the potential to act as an activator of several cell signaling pathways. In fungi, the sensing of CO triggers cell differentiation and the biosynthesis of proteins involved in the metabolism and pathogenicity of these microorganisms.

View Article and Find Full Text PDF

Background: Amyloid β (Aβ)-induced vascular dysfunction significantly contributes to the pathogenesis of Alzheimer's disease (AD). Aβ is known to impair endothelial nitric oxide synthase (eNOS) activity, thus inhibiting endothelial nitric oxide production (NO).

Method: In this study, we investigated Aβ-effects on heat shock protein 90 (HSP90) interaction with eNOS and Akt in cultured vascular endothelial cells and also explored the role of oxidative stress in this process.

View Article and Find Full Text PDF

Recent data have shown that a functional NO-cGMP signalling system plays an important role during development and seems to be operative early during the differentiation of embryonic stem cells. The intriguing possibility exists that this role can be evolutionarily conserved between vertebrates and invertebrates. In this paper, we have analyzed the effect of NO-cGMP pathway on the regeneration process in Hydra vulgaris, the most primitive invertebrate possessing a nervous system.

View Article and Find Full Text PDF

We present here a brief description of the relationships among metals, nitric oxide metabolism, and ageing. In particular, we will discuss the interactions occurring between redox (copper, iron) and non-redox (zinc) metals and nitric oxide, the metal- and nitric oxide-catalyzed formation of thiol adducts (nitrosothiols, mixed disulphides) and the possible involvement of these species in the ageing process.

View Article and Find Full Text PDF

Nitric oxide (NO) regulates key aspects of cell metabolism through reversible inhibition of cytochrome c oxidase (CcOX), the terminal electron acceptor (complex IV) of the mitochondrial respiratory chain, in competition with oxygen. Recently, a constitutive mitochondrial NOS corresponding to a neuronal NOS-I isoform (mtNOS-I) has been identified in several tissues. The role of this enzyme might be to generate NO close enough to its target without a significant overall increase in cellular NO concentrations.

View Article and Find Full Text PDF

A number of pathologies, including neurodegeneration and inflammation, have been associated with iron dysmetabolism in the brain. Hence, systems involved in iron homeostasis at the cellular level have aroused considerable interest in recent years. The iron exporter ferroportin-1 (FP) and the multicopper oxidase ceruloplasmin (CP) are essential for iron efflux from cells.

View Article and Find Full Text PDF

Previous results have indicated that lipopolysaccharide (LPS) plus interferon-gamma (IFNgamma) inhibits nitric-oxide synthase (NOS)-I activity in glial cells. We report here that arachidonic acid (AA) plays a pivotal role in this response, which was consistently reproduced in different glial cell lines and in primary rat astrocytes. This notion was established using pharmacological inhibitors of phospholipase A2 (PLA2), cytosolic PLA2 (cPLA2) antisense oligonucleotides, and AA add-back experiments.

View Article and Find Full Text PDF