Purpose: Radiation therapy with ion beams provides a better conformation and effectiveness of the dose delivered to the tumor with respect to photon beams. This implies that a small uncertainty or variation in the crossed tissue shape and density may lead to a more important underdosage of the tumor and/or an overdosage of the surrounding healthy tissue. Although the online control of beam fluence and transverse position is well managed by an appropriate beam delivery system, the online measurement of the longitudinal position of the Bragg peak inside the patient is still an open issue.
View Article and Find Full Text PDFA conceptual design of a mobile isocenter carbon ion gantry was carried out in the framework of the Particle Training Network for European Radiotherapy (PARTNER) and Union of Light Ion Centres in Europe (ULICE) projects. To validate the magnets used in this gantry, Finite Element Method (FEM) simulations were performed with COMSOL multiphysics; the purpose was to evaluate the magnetic field quality and the influence of additional support structures for correctors, 90° bending dipole and quadrupoles, both in dynamic and static regimes. Due to the low ramp rates, the dynamic effects do not disturb the homogeneity and the magnetic field level.
View Article and Find Full Text PDF