RNA interference (RNAi)-based therapeutics hold the potential for dominant genetic disorders, enabling sequence-specific inhibition of pathogenic gene products. We aimed to direct RNAi for the selective suppression of the heterozygous c.607 G > A variant causing encephalopathy.
View Article and Find Full Text PDFBiocidal coatings are of great interest to the healthcare system. In this work, the biocidal activity of coatings based on a complex biocide containing polymer and inorganic active antibacterial components was studied. Silver oxide was distributed in a matrix of a positively charged interpolyelectrolyte complex (IPEC) of polydiallyldimethylammonium chloride (PDADMAC) and sodium polystyrene sulfonate (PSS) using ultrasonic dispersion, forming nanoparticles with an average size of 5-6 nm.
View Article and Find Full Text PDFThermorubin (THR) is an aromatic anthracenopyranone antibiotic active against both Gram-positive and Gram-negative bacteria. It is known to bind to the 70S ribosome at the intersubunit bridge B2a and was thought to inhibit factor-dependent initiation of translation and obstruct the accommodation of tRNAs into the A site. Here, we show that thermorubin causes ribosomes to stall in vivo and in vitro at internal and termination codons, thereby allowing the ribosome to initiate protein synthesis and translate at least a few codons before stalling.
View Article and Find Full Text PDFThere are several well-studied examples of protective symbiosis between insect host and symbiotic actinobacteria, producing antimicrobial metabolites to inhibit host pathogens. These mutualistic relationships are best described for some wasps and leaf-cutting ants, while a huge variety of insect species still remain poorly explored. For the first time, we isolated actinobacteria from the harvester ant and evaluated the isolates' potential as antimicrobial producers.
View Article and Find Full Text PDFBacterial type II topoisomerases, DNA gyrase and topoisomerase IV, are targets of many antibiotics including fluoroquinolones (FQs). Unfortunately, a number of bacterial species easily acquire resistance to FQs by mutations in either DNA gyrase or topoisomerase IV genes. The emergence of resistant pathogenic strains is a global problem in healthcare, therefore, identifying alternative pathways to thwart their persistence is the current frontier in drug discovery.
View Article and Find Full Text PDF