This study explored the potential of rose aqueous extract (RE), a byproduct of rose essential oil extraction, to enhance the properties of biobased food packaging materials. RE contained a high phenolic content (153 mg of GAE/g of dw), rich in hydroxybenzoic acids and flavonols. The antioxidant potential of RE, assessed by DPPH assay, was evaluated (IC = 2.
View Article and Find Full Text PDFEcofriendly hydrogels were prepared using chitosan (CH, 285 kDa) and two fractions of low molecular weight microbial poly-γ-glutamic acid (γ-PGA) (R1 and R2 of 59 kDa and 20 kDa, respectively). The hydrogels were synthesized through sustainable physical blending, employing three CH/γ-PGA mass ratios (1/9, 2/8, and 3/7), resulting in the formation of physically crosslinked materials. The six resulting CH/R1 and CH/R2 hydrogels were physico-chemically characterized and the ones with the highest yields (CH/R1 and CH/R2 ratio of 3/7), analyzed for rheological and morphological properties, showed to act as bio-glues on wood and aluminum compared to commercial vinyl- (V1) and acetovinyl (V2) glues.
View Article and Find Full Text PDFThis paper sets up a new route for producing non-covalently crosslinked bio-composites by blending poly-γ-glutamic acid (γ-PGA) of microbial origin and chitosan (CH) through poly-electrolyte complexation under specific experimental conditions. CH and two different molecular weight γ-PGA fractions have been blended at different mass ratios (1/9, 2/8 and 3/7) under acidic pH. The developed materials seemed to behave like moldable hydrogels with a soft rubbery consistency.
View Article and Find Full Text PDFInt J Mol Sci
July 2023
The formulation of eco-friendly biodegradable packaging has received great attention during the last decades as an alternative to traditional widespread petroleum-based food packaging. With this aim, we designed and tested the properties of polyhydroxyalkanoates (PHA)-based bioplastics functionalized with phloretin as far as antioxidant, antimicrobial, and morpho-mechanic features are concerned. Mechanical and hydrophilicity features investigations revealed a mild influence of phloretin on the novel materials as a function of the concentration utilized (5, 7.
View Article and Find Full Text PDFThe aim of this Special Issue is to highlight recent investigations on different biopolymers obtained from renewable sources for use as edible coatings [...
View Article and Find Full Text PDFSince the possibility to biotechnologically produce melanin by Streptomycetes using plant biomass has been so far poorly investigated, Posidonia oceanica egagropili, a marine waste accumulating along the Mediterranean Sea coasts, was explored as a renewable source to enhance extracellular melanin production by Streptomyces roseochromogenes ATCC 13400. Therefore, different amounts of egagropili powder were added to a culture medium containing glucose, malt extract, and yeast extract, and their effect on the melanin biosynthesis was evaluated. A 2.
View Article and Find Full Text PDFBackground Microbial transglutaminase (mTG) has been successfully used to produce site-specific protein conjugates derivatized at the level of Gln and/or Lys residues for different biotechnological applications. Here, a recombinant peptide identified in human apolipoprotein B sequence, named r(P)ApoB and endowed with antimicrobial activity, was studied as a possible acyl acceptor substrate of mTG with at least one of the six Lys residues present in its sequence. Methods The enzymatic crosslinking reaction was performed in vitro using N,N-dimethylcasein, substance P and bitter vetch (Vicia ervilia) seed proteins, well known acyl donor substrates in mTG-catalyzed reactions.
View Article and Find Full Text PDFSeveral proteins from animal and plant origin act as microbial transglutaminase substrate, a crosslinking enzyme capable of introducing isopeptide bonds into proteins between the aminoacids glutamines and lysines. This feature has been widely exploited to modify the biological properties of many proteins, such as emulsifying, gelling, viscosity, and foaming. Besides, microbial transglutaminase has been used to prepare bioplastics that, because made of renewable molecules, are able to replace the high polluting plastics of petrochemical origin.
View Article and Find Full Text PDFCitrus peel pectin was used to prepare films (cast with or without glycerol) containing mesoporous silica nanoparticles. Nanoparticles reduced significantly the particle size, and had no effect on the Zeta potential of pectin solutions. Mechanical characterization demonstrates that pectin+nanoparticles containing films slightly increased tensile strength and significantly decreased the Young's modulus in comparison to films made only of pectin.
View Article and Find Full Text PDFZeta potential and nanoparticle size were determined on film forming solutions of native and heat-denatured proteins of bitter vetch as a function of pH and of different concentrations of the polyamines spermidine and spermine, both in the absence and presence of the plasticizer glycerol. Our results showed that both polyamines decreased the negative zeta potential of all samples under pH 8.0 as a consequence of their ionic interaction with proteins.
View Article and Find Full Text PDFZeta potential and particle size were determined on pectin aqueous solutions as a function of pH and the effects of calcium ions, putrescine and spermidine on pectin film forming solutions and derived films were studied. Ca(2+) and polyamines were found to differently influence pectin zeta potential as well as thickness and mechanical and barrier properties of pectin films prepared at pH 7.5 either in the presence or absence of the plasticizer glycerol.
View Article and Find Full Text PDFThe growing social and economic consequences of pollution derived from plastics are focusing attention on the need to produce novel bioprocesses for enhancing food shelf-life. As a consequence, in recent years the use of edible films for food packaging is generating a huge scientific interest. In this work we report the production of an edible hydrocolloid film made by using Citrus pectin and the protein phaseolin crosslinked by microbial transglutaminase, an enzyme able to covalently modify proteins by formation of isopeptide bonds between glutamine and lysine residues.
View Article and Find Full Text PDFIn this article, edible hydrocolloid films were prepared by using Citrus pectins and the protein phaseolin in the presence of microbial transglutaminase, an enzyme able to catalyze isopeptide bonds between endo-protein-reactive glutamine and lysine residues. For the first time, trehalose, a nonreducing homodisaccharide into which two glucose units are linked together by a α-1,1-glycosidic linkage, was used as a component of hydrocolloid films constituted of both proteins and carbohydrates. Our data have demonstrated that these films act as very effective barriers to gases, especially to CO2 .
View Article and Find Full Text PDFAllergen detection and quantification is an essential part of allergen management as practiced by food manufacturers. Recently, protein MS methods (in particular, multiple reaction monitoring experiments) have begun to be adopted by the allergen detection community to provide an alternative technique to ELISA and PCR methods. MS analysis of proteins in foods provides additional challenges to the analyst, both in terms of experimental design and methodology: (1) choice of analyte, including multiplexing to simultaneously detect several biologically relevant molecules able to trigger allergic reactions; (2) choice of processing stable peptide markers for different target analytes that should be placed in publicly available databases; (3) markers allowing quantification (e.
View Article and Find Full Text PDF