Motivation: Thanks to research spanning nearly 30 years, two major models have emerged that account for nucleosome organization in chromatin: statistical and sequence specific. The first is based on elegant, easy to compute, closed-form mathematical formulas that make no assumptions of the physical and chemical properties of the underlying DNA sequence. Moreover, they need no training on the data for their computation.
View Article and Find Full Text PDFThe evolutionarily conserved ATP-dependent nucleosome remodelling factor ISWI can space nucleosomes affecting a variety of nuclear processes. In Drosophila, loss of ISWI leads to global transcriptional defects and to dramatic alterations in higher-order chromatin structure, especially on the male X chromosome. In order to understand if chromatin condensation and gene expression defects, observed in ISWI mutants, are directly correlated with ISWI nucleosome spacing activity, we conducted a genome-wide survey of ISWI binding and nucleosome positioning in wild-type and ISWI mutant chromatin.
View Article and Find Full Text PDF