Sn-based halide perovskites are expected to be the best replacement for toxic lead-based counterparts, owing to their similar ionic radii and the optimal band gap for use in solar cells, as well as their versatile use in light-emitting diodes and photodetection applications. Concerns, however, exist about their stability under ambient conditions, an issue that is exacerbated in polycrystalline films because grain boundaries present large concentrations of defects and act as entrance points for oxygen and water, causing Sn oxidation. A current thriving research area in perovskite materials is the fabrication of perovskite single crystals, promising improved optoelectronic properties due to excellent uniformity, reduced defects, and the absence of grain boundaries.
View Article and Find Full Text PDFAmong novel semiconductors, perovskites have gained significant attention due to their versatility, combining tunable optoelectronic properties with relatively easy fabrication processes. However, certain issues still hinder their widespread use, often related to the presence of defects and traps within the material. Beyond defect passivation in polycrystalline thin films, an alternative approach to enhancing material quality lies in the fabrication of single crystals.
View Article and Find Full Text PDFWe experimentally and computationally investigate the magneto-conductance across the radial heterojunction of InAs-GaSb core-shell nanowires under a magnetic field, , up to 30 T and at temperatures in the range 4.2-200 K. The observed double-peak negative differential conductance markedly blue-shifts with increasing .
View Article and Find Full Text PDFConventional techniques of measuring thermal transport properties may be unreliable or unwieldy when applied to nanostructures. However, a simple, all-electrical technique is available for all samples featuring high-aspect-ratio: the 3method. Nonetheless, its usual formulation relies on simple analytical results which may break down in real experimental conditions.
View Article and Find Full Text PDFThermoelectric polyelectrolytes are emerging as ideal material platform for self-powered bio-compatible electronic devices and sensors. However, despite the nanoscale nature of the ionic thermodiffusion processes underlying thermoelectric efficiency boost in polyelectrolytes, to date no evidence for direct probing of ionic diffusion on its relevant length and time scale has been reported. This gap is bridged by developing heat-driven hybrid nanotransistors based on InAs nanowires embedded in thermally biased Na -functionalized (poly)ethyleneoxide, where the semiconducting nanostructure acts as a nanoscale probe sensitive to the local arrangement of the ionic species.
View Article and Find Full Text PDFWe numerically investigated the use of graphene nanoribbons placed on top of silicon-on-insulator (SOI) strip waveguides for light polarization control in silicon photonic-integrated waveguides. We found that two factors mainly affected the polarization control: the graphene chemical potential and the geometrical parameters of the waveguide, such as the waveguide and nanoribbon widths and distance. We show that the graphene chemical potential influences both TE and TM polarizations almost in the same way, while the waveguide width tapering enables both TE-pass and TM-pass polarizing functionalities.
View Article and Find Full Text PDFIn this work, we show the design of a silicon photonic-based polarization converting device based on the integration of semiconduction InP nanowires on the silicon photonic platform. We present a comprehensive numerical analysis showing that full polarization conversion (from quasi-TE modes to quasi-TM modes, and vice versa) can be achieved in devices exhibiting small footprints (total device lengths below 20 µm) with minimal power loss (<2 dB). The approach described in this work can pave the way to the realization of complex and re-configurable photonic processors based on the manipulation of the state of polarization of guided light beams.
View Article and Find Full Text PDFOrdered arrays of vertically aligned semiconductor nanowires are regarded as promising candidates for the realization of all-dielectric metamaterials, artificial electromagnetic materials, whose properties can be engineered to enable new functions and enhanced device performances with respect to naturally existing materials. In this review we account for the recent progresses in substrate nanopatterning methods, strategies and approaches that overall constitute the preliminary step towards the bottom-up growth of arrays of vertically aligned semiconductor nanowires with a controlled location, size and morphology of each nanowire. While we focus specifically on III-V semiconductor nanowires, several concepts, mechanisms and conclusions reported in the manuscript can be invoked and are valid also for different nanowire materials.
View Article and Find Full Text PDFRecent advances in the nanofabrication and modeling of metasurfaces have shown the potential of these systems in providing unprecedented control over light-matter interactions at the nanoscale, enabling immediate and tangible improvement of features and specifications of photonic devices that are becoming always more crucial in enhancing everyday life quality. In this work, we theoretically demonstrate that metasurfaces made of periodic and non-periodic deterministic assemblies of vertically aligned semiconductor nanowires can be engineered to display a tailored effective optical response and provide a suitable route to realize advanced systems with controlled photonic properties particularly interesting for sensing applications. The metasurfaces investigated in this paper correspond to nanowire arrays that can be experimentally realized exploiting nanolithography and bottom-up nanowire growth methods: the combination of these techniques allow to finely control the position and the physical properties of each individual nanowire in complex arrays.
View Article and Find Full Text PDFWe fabricate dual-gated electric double layer (EDL) field effect transistors based on InAs nanowires gated with an ionic liquid, and we perform electrical transport measurements in the temperature range from room temperature to 4.2 K. By adjusting the spatial distribution of ions inside the ionic liquid employed as gate dielectric, we electrostatically induce doping in the nanostructures under analysis.
View Article and Find Full Text PDFWe report results on the control of barrier transparency in InAs/InP nanowire quantum dots via the electrostatic control of the device electron states. Recent works demonstrated that barrier transparency in this class of devices displays a general trend just depending on the total orbital energy of the trapped electrons. We show that a qualitatively different regime is observed at relatively low filling numbers, where tunneling rates are rather controlled by the axial configuration of the electron orbital.
View Article and Find Full Text PDFWith downscaling of electronic circuits, components based on semiconductor quantum dots are assuming increasing relevance for future technologies. Their response under external stimuli intrinsically depend on their quantum properties. Here we investigate single-electron tunneling in hard-wall InAs/InP nanowires in the presence of an off-resonant microwave drive.
View Article and Find Full Text PDFIn this work, we isolate individual wurtzite InAs nanowires and fabricate electrical contacts at both ends, exploiting the single nanostructures as building blocks to realize two different architectures of conductometric sensors: (a) the nanowire is drop-casted onto-supported by-a SiO/Si substrate, and (b) the nanowire is suspended at approximately 250 nm from the substrate. We test the source-drain current upon changes in the concentration of humidity, ethanol, and NO, using synthetic air as a gas carrier, moving a step forward towards mimicking operational environmental conditions. The supported architecture shows higher response in the mid humidity range (50% relative humidity), with shorter response and recovery times and lower detection limit with respect to the suspended nanowire.
View Article and Find Full Text PDFWe demonstrate high-temperature thermoelectric conversion in InAs/InP nanowire quantum dots by taking advantage of their strong electronic confinement. The electrical conductance G and the thermopower S are obtained from charge transport measurements and accurately reproduced with a theoretical model accounting for the multilevel structure of the quantum dot. Notably, our analysis does not rely on the estimate of cotunnelling contributions, since electronic thermal transport is dominated by multilevel heat transport.
View Article and Find Full Text PDF