Publications by authors named "Valeria Colavito"

Background: The European PharmaCog study (http://www.pharmacog.org) has reported a reduction in delta (1-6 Hz) electroencephalographic (EEG) power (density) during cage exploration (active condition) compared with quiet wakefulness (passive condition) in PDAPP mice (hAPP Indiana V717F mutation) modeling Alzheimer's disease (AD) amyloidosis and cognitive deficits.

View Article and Find Full Text PDF

Background: Human African trypanosomiasis or sleeping sickness, caused by the parasite Trypanosoma brucei, leads to neuroinflammation and characteristic sleep/wake alterations. The relationship between the onset of these alterations and the development of neuroinflammation is of high translational relevance, but remains unclear. This study investigates the expression of interferon (IFN)-γ and IFN-inducible chemokine genes in the brain, and the levels of CXCL10 in the serum and cerebrospinal fluid prior to and during the encephalitic stage of trypanosome infection, and correlates these with sleep/wake changes in a rat model of the disease.

View Article and Find Full Text PDF

Background: It has been shown that theta (6-10 Hz) and delta (1-6 Hz) ongoing electroencephalographic (EEG) rhythms revealed variations in the cortical arousal in C57 Wild Type (WT) mice during cage exploration (active condition) compared to awake quiet behavior (passive condition; IMI PharmaCog project, www.pharmacog.eu).

View Article and Find Full Text PDF

Resting state electroencephalographic (EEG) rhythms reflect the fluctuation of cortical arousal and vigilance in a typical clinical setting, namely the EEG recording for few minutes with eyes closed (i.e., passive condition) and eyes open (i.

View Article and Find Full Text PDF

The paraventricular thalamic nucleus (PVT), the main component of the dorsal thalamic midline, receives multiple inputs from the brain stem and hypothalamus, and targets the medial prefrontal cortex, nucleus accumbens and amygdala. PVT has been implicated in several functions, especially adaptation to chronic stress, addiction behaviors and reward, mood, emotion. We here focus on the wiring and neuronal properties linking PVT with circadian timing and sleep/wake regulation, and their behavioral implications.

View Article and Find Full Text PDF

Paradigms of sleep deprivation (SD) and memory testing in rodents (laboratory rats and mice) are here reviewed. The vast majority of these studies have been aimed at understanding the contribution of sleep to cognition, and in particular to memory. Relatively little attention, instead, has been devoted to SD as a challenge to induce a transient memory impairment, and therefore as a tool to test cognitive enhancers in drug discovery.

View Article and Find Full Text PDF

Body function rhythmicity has a key function for the regulation of internal timing and adaptation to the environment. A wealth of recent data has implicated endogenous biological rhythm generation and regulation in susceptibility to disease, longevity, cognitive performance. Concerning brain diseases, it has been established that many molecular pathways implicated in neurodegeneration are under circadian regulation.

View Article and Find Full Text PDF

Modafinil (MOD) is a wake-promoting drug with pro-cognitive properties. Despite its increasing use, the neuronal substrates of MOD action remain elusive. In particular, animal studies have highlighted a putative role of diencephalic areas as primary neuronal substrate of MOD action, with inconsistent evidence of recruitment of fronto-cortical areas despite the established pro-cognitive effects of the drug.

View Article and Find Full Text PDF

Tissues and organs change over time, regulated by intrinsic (genetic) determinants and environmental (and microenvironmental) adaptation. Brain changes during lifetime are especially critical, as the brain is the effector of cognition and the vast majority of neurons live throughout the life of the individual. In addition, brain aging mechanisms are especially critical for disease vulnerability, given the aging-related prevalence of pathologies that include neurodegenerative diseases.

View Article and Find Full Text PDF