Publications by authors named "Valeria A Torok"

There has been an increase in foodborne vibriosis outbreaks globally, with Vibrio parahaemolyticus emerging as a foodborne issue in temperate commercial shellfish growing regions, including southern Australia. The food safety concerns associated with these microorganisms have led to the need for specific guidance on potential risk management strategies for their control. This is the first Australian multi-seasonal survey of V.

View Article and Find Full Text PDF

There is a substantial, and growing, body of research focused on manipulating gastrointestinal microbes to affect health and production. However, the maternal vaginal microbiota and its effects on neonatal inoculation and lifetime production have received little attention. We aimed to characterize the vaginal microbes of domesticated sheep to determine whether they differ across sheep breeds with differing meat and wool growth potentials and to determine a link between vaginal microbes and high and low producing animals.

View Article and Find Full Text PDF

Sows undergo physiological stress during gestation and lactation, potentially leading to enteric dysbiosis and reduced reproductive potential. Phytogenic additives (PFs) may improve performance via their antioxidant, anti-inflammatory and antimicrobial properties. This study determined whether the provision of a gestation/lactation diet containing PAs would alter the gastrointestinal microbiota of sows and their piglets, and improve performance.

View Article and Find Full Text PDF

It is known that gilt progeny performance is reduced compared with sow progeny. Previous research suggests that the presence of maternal feces in early life improves the health and survival of offspring. Therefore, we aimed to determine whether contact with feces from multiparous (MP) sows would improve the growth and survival of piglets born and reared on primiparous (P1) sows and if so, whether these differences are associated with the gut microbiota.

View Article and Find Full Text PDF

Initial enteric microbial colonisation influences animal health and disease, hence an understanding of the first microbial colonisers within the piglet is important. The spiral colon of piglets that were stillborn ( = 20), born-alive ( = 10), and born alive and had sucked ( = 9) were collected from 28 sows to investigate whether initial microbial colonisation occurs pre- or post-partum and how it develops during the first 24 h post-partum. To examine this, DNA was extracted and 16S rRNA amplicon analysis was performed to allow analysis of microbial communities.

View Article and Find Full Text PDF

Oysters contaminated with human enteric viruses from sewage are implicated in foodborne outbreaks globally. Bacteriophages have been identified as potential indicators for these viruses, but have not been used in shellfish management outside of the USA. This study aimed to determine the background levels of F-RNA phage in five Australian oyster growing areas with a history of sewage spills and closures, over an 18-month period.

View Article and Find Full Text PDF

Weaning is a stressful time for piglets, often leading to weight loss and is associated with increased morbidity and mortality. A leading cause for these post-weaning problems is enteric dysbiosis and methods to improve piglet health at this crucial developmental stage are needed. This study aimed to determine whether an enteric dysbiosis caused by weaning could be corrected via a faecal microbiota transplantation (FMT) from healthy piglets from a previous wean.

View Article and Find Full Text PDF

Antimicrobial use in animals and the potential development of antimicrobial resistance is a global concern. So, non-antimicrobial techniques for animal disease control are needed. This study aimed to determine whether neonatal ceftiofur (CF) treatment affects piglet faecal microbiomes and whether faecal microbiome transplantation (FMT) can correct it.

View Article and Find Full Text PDF

The apparent international rise in foodborne virus outbreaks attributed to fresh produce and the increasing importance of fresh produce in the Australian diet has led to the requirement to gather information to inform the development of risk management strategies. A prevalence survey for norovirus (NoV) and hepatitis A virus (HAV) in fresh Australian produce (leafy greens, strawberries and blueberries) at retail was undertaken during 2013-2014 and data used to develop a risk profile. The prevalence of HAV in berries and leafy greens was estimated to be <2%, with no virus detected in produce during the yearlong survey.

View Article and Find Full Text PDF

Human norovirus (NoV) remains the most common cause of viral gastroenteritis and the leading cause of viral foodborne outbreaks globally. NoV is highly pathogenic with an estimated median viral infective dose (ID) ranging from 18 to 1015 genome copies. For NoV detection, the only reliable and sensitive method available for detection and quantification is reverse transcription quantitative polymerase chain reaction (RTqPCR).

View Article and Find Full Text PDF

Human enteric viruses, such as norovirus and hepatitis A virus, are spread by a variety of routes including faecal-oral transmission. Contaminated bivalve shellfish are regularly implicated in foodborne viral disease outbreaks internationally. Traditionally indicator bacteria, the coliforms and Escherichia coli, have been used to detect faecal pollution in growing waters and shellfish.

View Article and Find Full Text PDF

The rumen microbiota contributes to greenhouse gas emissions and has an impact on feed efficiency and ruminant product fatty acid composition. Dietary fat supplements have shown promise in reducing enteric methane production and in altering the fatty acid profiles of ruminant-derived products, yet in vivo studies on how these impact the rumen microbiota are limited. In this study, we investigated the rumen bacterial, archaeal, fungal, and ciliate protozoan communities of dairy cows fed diets supplemented with 4 levels of docosahexaenoic acid (DHA) (0, 25, 50, and 75 g·cow(-1)·day(-1)) and established linkages between microbial communities and production parameters.

View Article and Find Full Text PDF

This study aimed to assess bacterial spoilage of half shell Pacific and Sydney rock oysters during storage using microbial culture and 16S rRNA pyrosequencing. Odour and pH of oyster meats were also investigated. Estimation of microbiological counts by microbial culture highlighted growth of psychrotrophic bacteria.

View Article and Find Full Text PDF

An abnormal composition of the gut microbiota is believed to be associated with the pathogenesis of inflammatory bowel disease (IBD). We utilized terminal restriction fragment length polymorphism (T-RFLP) analysis to quantify faecal bacterial communities from rats with experimental colitis. Male Sprague Dawley rats (n=10/group) ingested 2% dextran sulfate sodium (DSS) or water for up to 7 days.

View Article and Find Full Text PDF

Three broiler feeding trials were investigated in order to identify gut bacteria consistently linked with improvements in bird performance as measured by feed efficiency. Trials were done in various geographic locations and varied in diet composition, broiler breed, and bird age. Gut microbial communities were investigated using microbial profiling.

View Article and Find Full Text PDF

The effects of avilamycin, zinc bacitracin, and flavophospholipol on broiler gut microbial community colonization and bird performance in the first 17 days posthatch were investigated. Significant differences in gut microbiota associated with gut section, dietary treatment, and age were identified by terminal restriction fragment length polymorphism (T-RFLP), although no performance-related differences between dietary treatments were detected. Similar age-related shifts in the gut microbiota were identified regardless of diet but varied between the ilea and ceca.

View Article and Find Full Text PDF

A high-throughput microbial profiling tool based on terminal restriction fragment length polymorphism was developed to monitor the poultry gut microbiota in response to dietary manipulations. Gut microbial communities from the duodena, jejuna, ilea, and ceca of 48 birds fed either a barley control diet or barley diet supplemented with exogenous enzymes for degrading nonstarch polysaccharide were characterized by using multivariate statistical methods. Analysis of samples showed that gut microbial communities varied significantly among gut sections, except between the duodenum and jejunum.

View Article and Find Full Text PDF