Publications by authors named "Valentyna Krashevska"

Article Synopsis
  • The growth of the oil palm industry in Indonesia has positively impacted rural livelihoods but negatively affected biodiversity and ecosystems.
  • Researchers examined different oil palm production systems to find ways to balance ecological health with economic benefits.
  • They discovered that practices like reducing management intensity and incorporating native trees can improve ecological outcomes while maintaining or even enhancing palm yields, suggesting pathways towards more sustainable palm oil cultivation.
View Article and Find Full Text PDF

Rainforest conversion and expansion of plantations in tropical regions change local microclimate and are associated with biodiversity decline. Tropical soils are a hotspot of animal biodiversity and may sensitively respond to microclimate changes, but these responses remain unexplored. To address this knowledge gap, here we investigated seasonal fluctuations in density and community composition of Collembola, a dominant group of soil invertebrates, in rainforest, and in rubber and oil palm plantations in Jambi province (Sumatra, Indonesia).

View Article and Find Full Text PDF

The shells of testate amoebae are morphologically diverse and persistent in the environment. Accordingly, the examination of the morphology and composition of shells became a standard tool in ecological, palaeoecological, and evolutionary studies. However, so far the function of the shell remains poorly understood and, although based on limited evidence, the shell was considered as a defense mechanism.

View Article and Find Full Text PDF

The tropical Andes are a species-rich and nitrogen-limited system, susceptible to increased nitrogen (N) inputs from the atmosphere. However, our understanding of the impacts of increased N input on belowground systems, in particular on protists and their role in nutrient cycling, remains limited. We explored how increased N affects protists in tropical montane rainforests in Ecuador using high-throughput sequencing (HTS) of environmental DNA from two litter layers.

View Article and Find Full Text PDF

In the United Nations Decade on Ecosystem Restoration, large knowledge gaps persist on how to increase biodiversity and ecosystem functioning in cash crop-dominated tropical landscapes. Here, we present findings from a large-scale, 5-year ecosystem restoration experiment in an oil palm landscape enriched with 52 tree islands, encompassing assessments of ten indicators of biodiversity and 19 indicators of ecosystem functioning. Overall, indicators of biodiversity and ecosystem functioning, as well as multidiversity and ecosystem multifunctionality, were higher in tree islands compared to conventionally managed oil palm.

View Article and Find Full Text PDF

Deforestation and agricultural expansion in the tropics affect local and regional climatic conditions, leading to synergistic negative impacts on land ecosystems. Climatic changes manifest in increased inter- and intraseasonal variations and frequency of extreme climatic events (i.e.

View Article and Find Full Text PDF

Agricultural expansion is among the main threats to biodiversity and functions of tropical ecosystems. It has been shown that conversion of rainforest into plantations erodes biodiversity, but further consequences for food-web structure and energetics of belowground communities remains little explored. We used a unique combination of stable isotope analysis and food-web energetics to analyze in a comprehensive way consequences of the conversion of rainforest into oil palm and rubber plantations on the structure of and channeling of energy through soil animal food webs in Sumatra, Indonesia.

View Article and Find Full Text PDF

Rainforest conversion and expansion of plantations in tropical regions are associated with changes in animal communities and biodiversity decline. In soil, Collembola are one of the most numerous invertebrate groups that affect the functioning of microbial communities and support arthropod predators. Despite that, information on the impact of changes in land use in the tropics on species and trait composition of Collembola communities is very limited.

View Article and Find Full Text PDF

In tropical forest ecosystems leaf litter from a large variety of species enters the decomposer system, however, the impact of leaf litter diversity on the abundance and activity of soil organisms during decomposition is little known. We investigated the effect of leaf litter diversity and identity on microbial functions and the abundance of microarthropods in Ecuadorian tropical montane rainforests. We used litterbags filled with leaves of six native tree species (, , , , , and spp.

View Article and Find Full Text PDF

As the most abundant animals on earth, nematodes are a dominant component of the soil community. They play critical roles in regulating biogeochemical cycles and vegetation dynamics within and across landscapes and are an indicator of soil biological activity. Here, we present a comprehensive global dataset of soil nematode abundance and functional group composition.

View Article and Find Full Text PDF

Land-use transitions can enhance the livelihoods of smallholder farmers but potential economic-ecological trade-offs remain poorly understood. Here, we present an interdisciplinary study of the environmental, social and economic consequences of land-use transitions in a tropical smallholder landscape on Sumatra, Indonesia. We find widespread biodiversity-profit trade-offs resulting from land-use transitions from forest and agroforestry systems to rubber and oil palm monocultures, for 26,894 aboveground and belowground species and whole-ecosystem multidiversity.

View Article and Find Full Text PDF

Deforestation and land-use change in tropical regions result in habitat loss and extinction of species that are unable to adapt to the conditions in agricultural landscapes. If the associated loss of functional diversity is not compensated by species colonizing the converted habitats, extinctions might be followed by a reduction or loss of ecosystem functions including biological control. To date, little is known about how land-use change in the tropics alters the functional diversity of invertebrate predators and which key environmental factors may mitigate the decline in functional diversity and predation in litter and soil communities.

View Article and Find Full Text PDF
Article Synopsis
  • Soil organisms, particularly nematodes, play a vital role in ecosystem functioning, but detailed models of their distribution are scarce.
  • A study analyzed 6,759 georeferenced samples to map global nematode abundance, revealing around 4.4 trillion nematodes in surface soils, with the highest concentrations found in sub-Arctic regions.
  • These findings enhance our understanding of soil fertility and could improve global biogeochemical models, aiding predictions of nutrient cycling in changing climates.
View Article and Find Full Text PDF

Protists, abundant but enigmatic single-celled eukaryotes, are important soil microbiota providing numerous ecosystem functions. We employed high-throughput sequencing of environmental DNA, targeting the V4 region of the 18S rRNA gene, to characterize changes in their abundance, species richness, and community structure with conversion of lowland rainforest into rubber agroforest (jungle rubber), and rubber and oil palm plantations; typical agricultural systems in Sumatra, Indonesia. We identified 5,204 operational taxonomic units (OTUs) at 97% identity threshold of protists from 32 sites.

View Article and Find Full Text PDF
Article Synopsis
  • Changing tropical rainforests into tree plantations for farming helps meet the world's food needs but harms the environment.
  • In Sumatra, different types of plantations cause significant loss of carbon, with oil palm causing the most loss.
  • This farming approach may hurt the planet’s ability to support things like clean air, healthy soil, and water quality in the future.
View Article and Find Full Text PDF

Morphological features are often the only characteristics suitable for identification of taxa in testate amoebae, especially in ecological and palaeoecological studies. However, whereas the morphology of some species is rather stable it may vary considerably in others. Within the order Arcellinida the genus Trigonopyxis with the type species Trigonopyxis arcula is morphologically highly variable.

View Article and Find Full Text PDF

We investigated how the land-use change from rainforest into jungle rubber, intensive rubber and oil palm plantations affects decomposers and litter decomposition in Sumatra, Indonesia. Litterbags containing three litter types were placed into four land-use systems and harvested after 6 and 12 months. Litter mass loss and litter element concentrations were measured, and different microbial groups including bacteria, fungi and testate amoebae were studied.

View Article and Find Full Text PDF

Protists include all eukaryotes except plants, fungi and animals. They are an essential, yet often forgotten, component of the soil microbiome. Method developments have now furthered our understanding of the real taxonomic and functional diversity of soil protists.

View Article and Find Full Text PDF

We investigated how altitude affects the decomposition of leaf and root litter in the Andean tropical montane rainforest of southern Ecuador, that is, through changes in the litter quality between altitudes or other site-specific differences in microenvironmental conditions. Leaf litter from three abundant tree species and roots of different diameter from sites at 1,000, 2,000, and 3,000 m were placed in litterbags and incubated for 6, 12, 24, 36, and 48 months. Environmental conditions at the three altitudes and the sampling time were the main factors driving litter decomposition, while origin, and therefore quality of the litter, was of minor importance.

View Article and Find Full Text PDF

Conversion of tropical rainforests into plantations fundamentally alters ecological niches of animal species. Generalist predators such as centipedes (Chilopoda) may be able to persist in converted ecosystems due to their ability to adapt and switch to alternative prey populations. We investigated variations in community composition and trophic niches of soil and litter living centipedes in a range of ecosystems including rainforests, jungle rubber agroforests, and rubber and oil palm monocultures in two landscapes in Sumatra, Indonesia.

View Article and Find Full Text PDF

We investigated the role of leaf litter chemistry and richness in affecting testate amoeba communities of tropical rainforest in the Ecuadorian Andes. Litterbags containing leaf litter from four dominating tree species (Clusia sp., Myrcia pubescens, Graffenrieda emarginata, and Cecropia andina) with richness 1, 2, and 4 species were established and exposed in the field for 12 months at 2000 m a.

View Article and Find Full Text PDF

Smallholder-dominated agricultural mosaic landscapes are highlighted as model production systems that deliver both economic and ecological goods in tropical agricultural landscapes, but trade-offs underlying current land-use dynamics are poorly known. Here, using the most comprehensive quantification of land-use change and associated bundles of ecosystem functions, services and economic benefits to date, we show that Indonesian smallholders predominantly choose farm portfolios with high economic productivity but low ecological value. The more profitable oil palm and rubber monocultures replace forests and agroforests critical for maintaining above- and below-ground ecological functions and the diversity of most taxa.

View Article and Find Full Text PDF

Large areas of tropical rainforest are being converted to agricultural and plantation land uses, but little is known of biodiversity and ecological functioning under these replacement land uses. We investigated the effects of conversion of rainforest into jungle rubber, intensive rubber and oil palm plantations on testate amoebae, diverse and functionally important protists in litter and soil. Living testate amoebae species richness, density and biomass were all lower in replacement land uses than in rainforest, with the impact being more pronounced in litter than in soil.

View Article and Find Full Text PDF

Tropical lowland rainforests are increasingly threatened by the expansion of agriculture and the extraction of natural resources. In Jambi Province, Indonesia, the interdisciplinary EFForTS project focuses on the ecological and socio-economic dimensions of rainforest conversion to jungle rubber agroforests and monoculture plantations of rubber and oil palm. Our data confirm that rainforest transformation and land use intensification lead to substantial losses in biodiversity and related ecosystem functions, such as decreased above- and below-ground carbon stocks.

View Article and Find Full Text PDF

Prokaryotes are the most abundant and diverse group of microorganisms in soil and mediate virtually all biogeochemical cycles in terrestrial ecosystems. Thereby, they influence aboveground plant productivity and diversity. In this study, the impact of rainforest transformation to intensively managed cash crop systems on soil prokaryotic communities was investigated.

View Article and Find Full Text PDF