Publications by authors named "Valentinuzzi F"

Nutrient deficiencies considerably limit agricultural production worldwide. However, while single deficiencies are widely studied, combined deficiencies are poorly addressed. Hence, the aim of this paper was to study single and combined deficiencies of iron (Fe) and phosphorus (P) in barley (Hordeum vulgare) and tomato (Solanum lycopersicum).

View Article and Find Full Text PDF

Background: The release of organic acids (OAs) is considered the main mechanism used by phosphate-solubilizing bacteria (PSB) to dissolve inorganic phosphate in soil. Nevertheless, little is known about the effect of individual OAs produced by a particular PSB in a soil-plant system. For these reasons, the present work aimed at investigating the effect of Enterobacter sp.

View Article and Find Full Text PDF

Nitrogen (N) as well as Phosphorus (P) are key nutrients determining crop productivity. Legumes have developed strategies to overcome nutrient limitation by, for example, forming a symbiotic relationship with N-fixing and the release of P-mobilizing exudates and are thus able to grow without supply of N or P fertilizers. The legume-rhizobial symbiosis starts with root release of isoflavonoids that act as signaling molecules perceived by compatible bacteria.

View Article and Find Full Text PDF

Phosphorus (P) is an essential nutrient for plants. The use of plant growth-promoting bacteria (PGPB) may also improve plant development and enhance nutrient availability, thus providing a promising alternative or supplement to chemical fertilizers. This study aimed to evaluate the effectiveness of sp.

View Article and Find Full Text PDF

Sweet basil ( L.) is one of the most produced aromatic herbs in the world, exploiting hydroponic systems. It has been widely assessed that macronutrients, like nitrogen (N) and sulfur (S), can strongly affect the organoleptic qualities of agricultural products, thus influencing their nutraceutical value.

View Article and Find Full Text PDF

Plasmopara viticola is one of the most important pathogens infecting Vitis vinifera plants. The interactions among P. viticola and both susceptible and resistant grapevine plants have been extensively characterised, at transcriptomic, proteomic and metabolomic levels.

View Article and Find Full Text PDF

The reliable quantification of root exudation and nutrient uptake is a very challenging task, especially when considering single root segments. Most methods used necessitate root handling root dissecting/cutting. However, there is a knowledge gap on how much these techniques affect root physiology.

View Article and Find Full Text PDF

Due to the deliberate use of cupric fungicides in the last century for crop-defence programs, copper (Cu) has considerably accumulated in the soil. The concentrations of Cu often exceed the safety limits of risk assessment for Cu in soil and this may cause toxicity in plants. Copper toxicity induces nutritional imbalances in plants and constraints to plants growth.

View Article and Find Full Text PDF

Iron (Fe) is an essential micronutrient for plant life and development. However, in soil, Fe bioavailability is often limited and variable in space and time, thus different regions of the same root system might be exposed to different nutrient provisions. Few studies showed that the response to variable Fe provision is controlled at local and systemic levels, albeit the identity of the signals involved is still elusive.

View Article and Find Full Text PDF

Spreading of manure on agricultural soils is a main source of ammonia emissions and/or nitrate leaching. It has been addressed by the European Union with the Directives 2001/81/EC and 91/676/EEC to protect the environment and the human health. The disposal of manure has therefore become an economic and environmental challenge for farmers.

View Article and Find Full Text PDF

Ryegrass (Lolium perenne L.) is a plant species that can express mechanisms of tolerance to copper (Cu) toxicity. Therefore, the agronomical approach of intercropping system with ryegrass may represent a promising tool to limit the onset of Cu toxicity symptoms in the other intercropped plants species, particularly when an inadequate nutrient availability like iron (Fe) shortage is also concurrently present.

View Article and Find Full Text PDF

Soilless cultivation represent a valid opportunity for the agricultural production sector, especially in areas characterized by severe soil degradation and limited water availability. Furthermore, this agronomic practice embodies a favorable response toward an environment-friendly agriculture and a promising tool in the vision of a general challenge in terms of food security. This review aims therefore at unraveling limitations and opportunities of hydroponic solutions used in soilless cropping systems focusing on the plant mineral nutrition process.

View Article and Find Full Text PDF

The high copper (Cu) concentration in vineyard soils causes the increase of Cu toxicity symptoms in young grapevines. Recently, intercropping of grapevine and oat was shown to reduce Cu toxicity effects, modulating the root ionome. On these bases, the focus of the work was to investigate the impact of Cu toxicity of either monocropped or oat-intercropped grapevine rootstocks plants (196.

View Article and Find Full Text PDF

Agronomic strategies as intercropping might be applied to reduce plant-available copper (Cu) in Cu-contaminated soils. Thus, our aim was to characterize two different oat cultivars, Avena sativa L. cv.

View Article and Find Full Text PDF

Iron and phosphorus are abundant elements in soils but poorly available for plant nutrition. The availability of these two nutrients represents a major constraint for fruit tree cultivation such as apple (Malus × domestica) leading very often to a decrease of fruit productivity and quality worsening. Aim of this study was to characterize common and specific features of plant response to Fe and P deficiencies by ionomic, transcriptomic and exudation profiling of apple roots.

View Article and Find Full Text PDF

Nitrogen (N) represents one of the limiting factors for crop growth and productivity and to date has been widely supplied via external application of fertilizers. However, the use of plant growth-promoting rhizobacteria (PGPR) might represent a valuable tool to further improve plant nutrition. This study examines the influence of Azospirillum brasilense strain Cd on nitrate uptake in maize (Zea mays) plants, focusing on the high-affinity transport system (HATS).

View Article and Find Full Text PDF

Azospirillum brasilense was reported to up-regulate iron (Fe) uptake mechanisms, such as Fe reduction and rhizosphere acidification, in both Fe sufficient and deficient cucumber plants (Cucumis sativus L.). Strategy I plants take up both Fe and copper (Cu) after their reduction mediated by the ferric-chelate reductase oxidase (FRO) enzyme.

View Article and Find Full Text PDF

The long-term use of Cu-containing fungicides contaminates vineyards soils, which can induce Cu toxicity and nutrient imbalances in several plant species. The aim of this work was to evaluate the effect of Cu toxicity on two grapevine rootstocks, Fercal and 196.17, and to elucidate if intercropping with oat can alleviate grapevine Cu toxicity.

View Article and Find Full Text PDF

Selenium (Se) is an essential nutrient for humans, due to its antioxidant properties, whereas, to date, its essentiality to plants still remains to be demonstrated. Nevertheless, if added to the cultivation substrate, plants growth resulted enhanced. However, the concentration of Se in agricultural soils is very variable, ranging from 0.

View Article and Find Full Text PDF

Strawberries are a very popular fruit among berries, for both their commercial and economic importance, but especially for their beneficial effects for human health. However, their bioactive compound content is strictly related to the nutritional status of the plant and might be affected if nutritional disorders (e.g.

View Article and Find Full Text PDF

Background: Among berries, strawberry fruits are one of the richest natural sources of health-beneficial components such as micronutrients, antioxidants and phytochemicals. Strawberry quality depends greatly upon genotype, environmental factors, cultivation techniques and nutrient supply. This study aimed to assess the influence of phosphorus and iron deficiency on the bioactive compound content in strawberry fruits grown under hydroponic conditions.

View Article and Find Full Text PDF