Ionic liquids (ILs) are structurally tunable salts with applications ranging from chemical synthesis to batteries, novel materials and medicine. Despite their potential, the toxicity of ILs poses significant environmental and biological challenges. This study introduces a comprehensive dataset of cytotoxicity of 1227 ILs, compiled from 151 research papers and encompassing 3837 data entries.
View Article and Find Full Text PDFThe increasing need to understand and control the environmental impact of chemical processes has revealed the challenge in efficient evaluation of toxicity of the vast number of chemical compounds and their varying effects on biological systems. In this study, we introduce "Build-a-bio-Strip", a novel online service designed to carry out a quick initial analysis of the toxic impact of chemical processes. This platform enables users to automatically generate toxicity characteristics of chemical reactions using their own data on cytotoxicity or median lethal doses of the substances involved or computational predictions based on SMILES strings.
View Article and Find Full Text PDFThe transition toward renewable resources is pivotal for the sustainability of the chemical industry, making the exploration of biobased furanic platform chemicals derived from plant biomass of paramount importance. These compounds, promising alternatives to petroleum-derived aromatics, face challenges in terms of stability under synthetic conditions, limiting their practical application in the fuel, chemical, and pharmaceutical sectors. Our study presents a comprehensive evaluation of the stability of furan derivatives in various solvents and under different conditions, addressing the significant challenge of their instability.
View Article and Find Full Text PDFN,N'-Diarylimidazolium salts containing haloalkyl functional groups that are reactive with various nucleophiles are considered to be promising reagents for the preparation of functionalized N-heterocyclic carbene (NHC) ligands, which are in demand in catalysis, materials science, and biomedical research. Recently, 4-chloromethyl-functionalized N,N'-diarylimidazolium salts became readily available via the condensation of N,N'-diaryl-2-methyl-1,4-diaza-1,3-butadienes with ethyl orthoformate and MeSiCl, but these compounds were found to have insufficient reactivity in reactions with many nucleophiles. These chloromethyl salts were studied as precursors in the synthesis of bromo- and iodomethyl-functionalized imidazolium salts by halide anion exchange.
View Article and Find Full Text PDFDetermining molecular structures is foundational in chemistry and biology. The notion of discerning molecular structures simply from the visual appearance of a material remained almost unthinkable until the advent of machine learning. This paper introduces a pioneering approach bridging the visual appearance of materials (both at the micro- and nanostructural levels) with traditional chemical structure analysis methods.
View Article and Find Full Text PDFIonic liquids (ILs), earlier praised for their eco-friendliness, have emerged as key chemicals in advancing green chemistry, catalysis, solvent development, and more. However, the discovery of their notable toxicity has led to a controversial reputation of ILs and has shifted the research landscape towards understanding their biological impacts. The present study examines the mechanism of cytotoxicity of 32 ILs across six classes, highlighting their effects on the cell cycle of the Jurkat cell line.
View Article and Find Full Text PDFThe electron-donating and electron-accepting properties of N-heterocyclic carbene (NHC) ligands play a pivotal role in governing their interactions with transition metals, thereby influencing the selectivity and reactivity in catalytic processes. Herein, we report the synthesis of Pd/NHC and Ni/NHC complexes, wherein the electronic parameters of the NHC ligands were systematically varied. By performing a series of controlled structure modifications, we elucidated the influence of the σ-donor and π-acceptor properties of NHC ligands on interactions with the transition metals Pd and Ni and, consequently, the catalytic behavior of Pd and Ni complexes.
View Article and Find Full Text PDFOxidative addition (OA) is a necessary step in mechanisms of widely used synthetic methodologies such as the Heck reaction, cross-coupling reactions, and the Buchwald-Hartwig amination. This study pioneers the exploration of OA of aryl halide to palladium nanoparticles (NPs), a process previously unaddressed in contrast to the activity of well-studied Pd(0) complexes. Employing DFT modeling and semi-empirical metadynamics simulations, the oxidative addition of phenyl bromide to Pd nanoparticles was investigated in detail.
View Article and Find Full Text PDFCarbon materials have paramount importance in various fields of materials science, from electronic devices to industrial catalysts. The properties of these materials are strongly related to the distribution of defects-irregularities in electron density on their surfaces. Different materials have various distributions and quantities of these defects, which can be imaged using a procedure that involves depositing palladium nanoparticles.
View Article and Find Full Text PDFAlthough the tris(dibenzylideneacetone)diplatinum complex (Ptdba) is an important source of Pt(0) used in catalysis and materials science, its structure has not yet been fully elucidated. A thorough study of the three-dimensional structure of Ptdba and its dynamic behavior in solution was carried out using NMR spectroscopy methods at a high field (600 MHz) and molecular modeling. The complex was shown to contain three dba ligands in the , , and conformations, which are uniformly oriented around the Pt backbone.
View Article and Find Full Text PDFThe review presents a detailed discussion of the evolving field studying interactions between ionic liquids (ILs) and biological systems. Originating from molten salt electrolytes to present multiapplication substances, ILs have found usage across various fields due to their exceptional physicochemical properties, including excellent tunability. However, their interactions with biological systems and potential influence on living organisms remain largely unexplored.
View Article and Find Full Text PDFThe formation of transient hybrid nanoscale metal species from homogeneous molecular precatalysts has been demonstrated by in situ NMR studies of catalytic reactions involving transition metals with N-heterocyclic carbene ligands (M/NHC). These hybrid structures provide benefits of both molecular complexes and nanoparticles, enhancing the activity, selectivity, flexibility, and regulation of active species. However, they are challenging to identify experimentally due to the unsuitability of standard methods used for homogeneous or heterogeneous catalysis.
View Article and Find Full Text PDFThis review explores the pivotal role of sulfur in advancing sustainable carbon-carbon (C-C) coupling reactions. The unique electronic properties of sulfur, as a soft Lewis base with significant mesomeric effect make it an excellent candidate for initiating radical transformations, directing C-H-activation, and facilitating cycloaddition and C-S bond dissociation reactions. These attributes are crucial for developing waste-free methodologies in green chemistry.
View Article and Find Full Text PDFPalladium complexes with -heterocyclic carbenes (Pd/NHC) serve as prominent precatalysts in numerous Pd-catalyzed organic reactions. While the evolution of Pd/NHC complexes, which involves the cleavage of the Pd-C(NHC) bond via reductive elimination and dissociation, is acknowledged to influence the catalysis mechanism and the performance of the catalytic systems, conventional analytic techniques [such as NMR, IR, UV-vis, gas chromatography-mass spectrometry (GC-MS), and high-performance liquid chromatography (HPLC)] frequently fail to quantitatively monitor the transformations of Pd/NHC complexes at catalyst concentrations typical of real-world conditions (below approximately 1 mol %). In this study, for the first time, we show the viability of using electrospray ionization mass spectrometry (ESI-MS).
View Article and Find Full Text PDFIn modern organic chemistry, harnessing the power of multicomponent radical reactions presents both significant challenges and extraordinary potential. This article delves into this scientific frontier by addressing the critical issue of controlling selectivity in such complex processes. We introduce a novel approach that revolves around the reversible addition of thiyl radicals to multiple bonds, reshaping the landscape of multicomponent radical reactions.
View Article and Find Full Text PDFThis review addresses the largely overlooked yet critical issue of "dead" metal in heterogeneous metal catalysts. "Dead" metal refers to the fraction of metal in a catalyst that remains inaccessible to reactants, significantly reducing the overall catalyst performance. As a representative example considered in detail here, this challenge is particularly relevant for carbon-supported metal catalysts, extensively employed in research and industrial settings.
View Article and Find Full Text PDFSupercapacitors (SCs) have emerged as critical components in applications ranging from transport to wearable electronics due to their rapid charge-discharge cycles, high power density, and reliability. This review offers an analysis of recent strides in supercapacitor research, emphasizing pivotal developments in sustainability, electrode materials, electrolytes, and 'smart SCs' designed for modern microelectronics with attributes such as flexibility, stretchability, and biocompatibility. Central to this discourse are two dominant electrode materials: carbon materials (CMs), primarily in electric double layer capacitors (EDLCs), and pseudocapacitive materials, involving oxides/hydroxides, chalcogenides, metal-organic frameworks, conductive polymers and metal nitrides such as MXene.
View Article and Find Full Text PDFThis study presents a novel ″3-in-1″ hybrid biocatalyst design that combines the individual efficiency of microorganisms while avoiding negative interactions between them. Yeast cells of VKM Y-2559, VKM Y-2677, and VKM Y-2482 were immobilized in an organosilicon material by using the sol-gel method, resulting in a hybrid biocatalyst. The catalytic activity of the immobilized microorganism mixture was evaluated by employing it as the bioreceptor element of a biosensor.
View Article and Find Full Text PDFImidazolium salts have found ubiquitous applications as N-heterocyclic carbene precursors and metal nanoparticle stabilizers in catalysis and metallodrug research. Substituents directly attached to the imidazole ring can have a significant influence on the electronic, steric, and other properties of NHC-proligands as well as their metal complexes. In the present study, for the first time, a new type of Pd/NHC complex with the RSO group directly attached to the imidazol-2-ylidene ligand core was designed and synthesized.
View Article and Find Full Text PDFVisible light irradiation of an aqueous solution of sodium alginate and organometallic complex [(CH)Fe(toluene)]BF transforms it into a rigid hydrogel due to crosslinking of the carboxylate groups by the iron ions. Irradiation of the same iron complex together with KSO initiates the polymerization of acrylamide, which provides an efficient method for light-controlled one-step preparation of alginate-polyacrylamide double network hydrogels, which are capable of gluing wet glass with 100-200 kPa shear strength.
View Article and Find Full Text PDFElectron microscopy is a key characterization technique for nanoscale systems, and electron microscopy images are typically recorded and analyzed in terms of the morphology of the objects under study in static mode. The emerging current trend is to analyze the dynamic behavior at the nanoscale observed during electron microscopy measurements. In this work, the study of the stability of MOF structures with different compositions and topologies under conditions of an electron microscope experiment revealed an unusual dynamic behavior of M NPs formed due to the electron-beam-induced transformation of specific frameworks.
View Article and Find Full Text PDFIn this work, using a combination of scanning and transmission electron microscopy (SEM and TEM), the transformations of palladium-containing species in imidazolium ionic liquids in reaction mixtures of the Mizoroki-Heck reaction and in related organic media are studied to understand a challenging question of the relative reactivity of organic halides as key substrates in modern catalytic technologies. The microscopy technique detects the formation of a stable nanosized palladium phase under the action of an aryl (Ar) halide capable of forming microcompartments in an ionic liquid. For the first time, the correlation between the reactivity of the aryl halide and the microdomain structure is observed: Ar-I (well-developed microdomains) > Ar-Br (microphase present) > Ar-Cl (minor amount of microphase).
View Article and Find Full Text PDFCross-coupling reactions are among the most important transformations in modern organic synthesis. Although the range of reported (het)aryl halides and nucleophile coupling partners is very large considering various protocols, the reaction conditions vary considerably between compound classes, necessitating renewed case-by-case optimization of the reaction conditions. Here we introduce adaptive dynamic homogeneous catalysis (AD-HoC) with nickel under visible-light-driven redox reaction conditions for general C(sp)-(hetero)atom coupling reactions.
View Article and Find Full Text PDFDuring previous stages of research, high biocidal activity toward microorganism archival strains has been used as the main indicator in the development of new antiseptic formulations. Although this factor remains one of the most important characteristics of biocide efficiency, the scale of antimicrobial resistance spread causes serious concern. Therefore, focus shifts toward the development of formulations with a stable effect even in the case of prolonged contact with pathogens.
View Article and Find Full Text PDFAn approach to the spatially localized characterization of supported catalysts over a reaction course is proposed. It consists of a combination of scanning, transmission, and high-resolution scanning transmission electron microscopy to determine metal particles from arrays of surface nanoparticles to individual nanoparticles and individual atoms. The study of the evolution of specific metal catalyst particles at different scale levels over time, particularly before and after the cross-coupling catalytic reaction, made it possible to approach the concept of 4D catalysis-tracking the positions of catalytic centers in space (3D) over time (+1D).
View Article and Find Full Text PDF