Measurements of stable isotope ratios in organic compounds are widely used tools for plant ecophysiological studies. However, the complexity of the processes involved in shaping hydrogen isotope values (δH) in plant carbohydrates has limited its broader application. To investigate the underlying biochemical processes responsible for H fractionation among water, sugars, and cellulose in leaves, we studied the three main CO fixation pathways (C, C, and CAM) and their response to changes in temperature and vapor pressure deficit (VPD).
View Article and Find Full Text PDFAuranofin (AF) is a gold-based compound with a well-known pharmacological and toxicological profile, currently used in the treatment of some severe forms of rheumatoid arthritis. Over the last twenty years, AF has also been repurposed as antiviral, antitumor, and antibacterial drug. In this review we focused on the antibacterial properties of AF, specifically researching the minimal inhibitory concentrations (MIC) of AF in both mono- and diderm bacteria reported so far in literature.
View Article and Find Full Text PDFIn recent years, DEER experiments in pulsed EPR have garnered interest for their precise distance distribution insights in cellular and buffer setups. These measurements linked to electron spin / values of the labelled sample are impacted by the cellular environment being fully protonated or deuterated, as demonstrated in the present study.
View Article and Find Full Text PDFExpert Opin Drug Discov
July 2024
Introduction: Auranofin (AF) is a well-established, FDA-approved, antiarthritic gold drug that is currently being reevaluated for a variety of therapeutic indications through drug repurposing. AF has shown great promise as a potential anticancer agent and has been approved for a few clinical trials in cancer. The renewed interest in AF has led to extensive research into the design, preparation and biological evaluation of auranofin analogs, which may have an even better pharmacological profile than the parent drug.
View Article and Find Full Text PDFScots pine (Pinus sylvestris L.) is a common European tree species, and understanding its acclimation to the rapidly changing climate through physiological, biochemical or structural adjustments is vital for predicting future growth. We investigated a long-term irrigation experiment at a naturally dry forest in Switzerland, comparing Scots pine trees that have been continuously irrigated for 17 years (irrigated) with those for which irrigation was interrupted after 10 years (stop) and non-irrigated trees (control), using tree growth, xylogenesis, wood anatomy, and carbon, oxygen and hydrogen stable isotope measurements in the water, sugars and cellulose of plant tissues.
View Article and Find Full Text PDFUnlabelled: Biomolecular applications of pulse dipolar electron paramagnetic resonance spectroscopy (PDS) are becoming increasingly valuable in structural biology. Site-directed spin labelling of proteins is routinely performed using nitroxides, with paramagnetic metal ions and other organic radicals gaining popularity as alternative spin centres. Spectroscopically orthogonal spin labelling using different types of labels potentially increases the information content available from a single sample.
View Article and Find Full Text PDFThe possibility of using selectively incorporated F nuclei for NMR spectroscopic studies has retrieved increasing interest in recent years. The high gyromagnetic ratio of F and its absence in native biomolecular systems make this nucleus an interesting alternative to standard H NMR spectroscopy. Here we show how we can attach a label, carrying a F atom, to protein tyrosines, through the use of a specific three component Mannich-type reaction.
View Article and Find Full Text PDFRecent methodological advancements in determining the nonexchangeable hydrogen isotopic composition (δ H ) of plant carbohydrates make it possible to disentangle the drivers of hydrogen isotope ( H) fractionation processes in plants. Here, we investigated the influence of phylogeny on the δ H of twig xylem cellulose and xylem water, as well as leaf sugars and leaf water, across 73 Northern Hemisphere tree and shrub species growing in a common garden. H fractionation in plant carbohydrates followed distinct phylogenetic patterns, with phylogeny reflected more in the δ H of leaf sugars than in that of twig xylem cellulose.
View Article and Find Full Text PDFRecent experiments have underlined the potential of δ2H in tree-ring cellulose as a physiological indicator of shifts in autotrophic versus heterotrophic processes (i.e., the use of fresh versus stored non-structural carbohydrates).
View Article and Find Full Text PDFThe analysis of the non-exchangeable hydrogen isotope ratio (δ H ) in carbohydrates is mostly limited to the structural component cellulose, while simple high-throughput methods for δ H values of non-structural carbohydrates (NSC) such as sugar and starch do not yet exist. Here, we tested if the hot vapor equilibration method originally developed for cellulose is applicable for NSC, verified by comparison with the traditional nitration method. We set up a detailed analytical protocol and applied the method to plant extracts of leaves from species with different photosynthetic pathways (i.
View Article and Find Full Text PDFA small library of dinuclear gold(I) complexes with the title ligands has been prepared, encompassing neutral, mono- and dicationic complexes. The luminescence properties of the complexes in the solid state have been evaluated, and it turns out that neutral and monocationic complexes not presenting a rigid metallamacrocyclic structure can exhibit rather strong emissions that extend towards the red region of the visible spectrum. The anticancer activity of the complexes has been also preliminarly evaluated; cytotoxicity seems to correlate with complex lipophilicity, whereas selectivity towards cancer cells can be apparently enhanced upon a judicious choice of the ligands.
View Article and Find Full Text PDFMonitoring early tree physiological responses to drought is key to understanding progressive impacts of drought on forests and identifying resilient species. We combined drone-based multispectral remote sensing with measurements of tree physiology and environmental parameters over two growing seasons in a 100-y-old Pinus sylvestris forest subject to 17-y of precipitation manipulation. Our goal was to determine if drone-based photochemical reflectance index (PRI) captures tree drought stress responses and whether responses are affected by long-term acclimation.
View Article and Find Full Text PDFTrees that grow in urban areas are confronted with a wide variety of stresses that undermine their long-term survival. These include mechanical damage to the crown, root reduction and stem injury, all of which remove significant parts of plant tissues. The single or combined effects of these stresses generate a complex array of growth and ecophysiological responses that are hard to predict.
View Article and Find Full Text PDFThis work reports a method to select the optimal working frequency in transversal bulk resonator acoustophoretic devices by electrical impedance measurements. The impedance spectra of acoustophoretic devices are rich in spurious resonance peaks originating from different resonance modes in the system not directly related to the channel resonance, why direct measurement of the piezoelectric transducer impedance spectra is not a viable strategy. This work presents, for the first time, that the resonance modes of microchip integrated acoustophoresis channels can be identified by sequentially measuring the impedance spectra of the acoustophoretic device when the channel is filled with two different fluids and subsequently calculate the Normalized Differential Spectrum (NDS).
View Article and Find Full Text PDFUrban trees are subjected to numerous biotic and mechanical damages, which can affect their growth rates and health. However, for most species, a systematic analysis of tree above- and below-ground growth reactions to a variety of damages is still lacking. Under a fully factorial experimental setup, using two common urban trees (), we tested the effects of various degrees of frequently occurring damage as defoliation, root reduction, and stem injuries for a total of 18 treatments.
View Article and Find Full Text PDFImproving our understanding of the potential of forest adaptation is an urgent task in the light of predicted climate change. Long-term alternatives for susceptible yet economically important tree species such as Norway spruce (Picea abies) are required, if the frequency and intensity of summer droughts will continue to increase. Although Silver fir (Abies alba) and Douglas fir (Pseudotsuga menziesii) have both been described as drought-tolerant species, our understanding of their growth responses to drought extremes is still limited.
View Article and Find Full Text PDF