Macromol Rapid Commun
November 2024
By means of molecular dynamics computer simulation, the conformational space of polyampholyte macromolecules with various distributions of the charged groups along the chain is studied. A coarse-grained model where each monomer unit of the chain is presented as a non-charged group in the backbone of the macromolecule connected with a charged side pendant is considered. A limiting case of fully charged chains in the isoelectric point is investigated.
View Article and Find Full Text PDFIn the present work, by means of computer simulation, we studied the adsorption and diffusion of polyelectrolyte macromolecules on oppositely charged surfaces. We considered the surface coverage and the charge of the adsorbed layer depending on the ionization degree of the macromolecules and the charge of the surface and carried out a computer experiment on the polymer diffusion within the adsorbed layers, taking into account its strong dependency on the surface coverage and the macromolecular ionization degree. The different regimes were distinguished that provided maximal mobility of the polymer chains along with a high number of charged groups in the layer, which could be beneficial for the development of the functional coatings.
View Article and Find Full Text PDFA single spherical nanoparticle coated with a densely grafted layer of an amphiphilic homopolymer with identical A-graft-B monomer units was studied by means of coarse-grained molecular dynamics. In solvent, selectively poor for mainchain and good for pendant groups; the grafted macromolecules self-assemble into different structures to form a complex pattern on the nanoparticle surface. We distinguish hedgehog, multipetalar, chamomile, and densely structured shells and outline the area of their stability using visual analysis and calculate aggregation numbers and specially introduced order parameters, including the branching coefficient and relative orientation of monomer units.
View Article and Find Full Text PDFAn analytical theory describing the variety of different morphological structures that spontaneously self-assemble in layers of amphiphilic homopolymers tightly grafted to spherical nanoparticle is proposed. For this purpose, the following structures were identified and outlined: hedgehogs, in which macromolecules are combined into cylindrical aggregates; chamomile, when cylindrical aggregates are connected by their ends into loops; multipetal structure with macromolecules self-assembling into thin lamellae; and unstructured, swollen and uniformly compacted shells. The results are presented in the form of state diagrams and serve as a basis for the directional design of the surface pattern by varying system parameters (particle radius, grafting density and degree of polymerization) and solvent properties (quality and selectivity).
View Article and Find Full Text PDFJ Colloid Interface Sci
May 2022
Hypothesis: Polymer with amphiphilic repeating units bathed in the mixed binary solvent can exhibit fibrillar formation and gelation via cononsolvency effect. Mechanism of gelation will be highly dependent on the solvent's interactions and morphology of the resulting fibrillar gel can be fine-tuned by changing binary solvent composition.
Experiments: Amphiphilic homopolymers dissolved in a mixture of two solvents with different affinities to monomeric units and to each other were modeled using dissipative particle dynamics.
The paper aims to study the mechanical properties of epoxy resin filled with clay nanoparticles (NPs), depending on their shapes and content on the surface of a modifying agent capable of forming covalent bonds with a polymer. The cylindrical clay nanoparticles with equal volume and different aspects ratios (disks, barrel, and stick) are addressed. The NPs' bonding ratio with the polymer () is determined by the fraction of reactive groups and conversion time and varies from = 0 (non-bonded nanoparticles) to = 0.
View Article and Find Full Text PDFThis paper reports the self-assembly of the fibrillar network in a concentrated solution of macromolecules with an amphiphilic structure of repeating units. The investigation of amphiphilic homopolymers and alternating copolymers with the linear and cyclic topologies, the solution with different polymer concentrations and solvent qualities, allows us to conclude that the ability to form a fibrillar gel with branched fibrils and regular subchain thickness is inherent for macromolecules with the solvophobic backbone and solvophilic pendants. The elements of the gel structure, such as the mesh size and fibrillar thickness, the number of cross-links, and their functionality, can be tuned and customized according to the requirements of their application.
View Article and Find Full Text PDFThe structure of amphiphilic spherical brushes, consisting of the nano-SiO core, the hyperbranched polyamidoamine subshell, and a grafted layer of long hydrophobically modified polyacrylamide (HMPAM) chains, in aqueous solution was analyzed and described in the framework of the original mean-field approach. The scaling estimations of the hydrodynamic radius of such polymer brushes as a function of the number of grafted macromolecules allow concluding that the HMPAM shells are in a globular state and that the region of the stretched chains adjacent to the grafting surface is a minor part of the grafted macromolecules and does not have a significant impact on the self-assembly of the HMPAM shell caused by the complex hydrophobic-hydrophilic composition of their monomer units. In mean-field theory, the amphiphilic nature of HMPAM was taken into account by attaching the hydrophobic side group H to some fraction of monomer units of the hydrophilic P backbone.
View Article and Find Full Text PDFThis article is devoted to the study of polymer layers of amphiphilic homopolymers tightly grafted to a flat surface at the nodes of a square lattice. It was shown that, due to the amphiphilicity of monomer units containing groups with different affinities, in a selective solvent, such layers form lamellae perpendicular to the grafting surface. The period of the lamellae depends on the grafting density and the quality of the solvent.
View Article and Find Full Text PDFBy means of computer modeling, the self-organization of densely grafted macromolecules with amphiphilic monomer units as a function of macromolecular polymerization degree and solvent quality was studied and a diagram of state was constructed. The diagram contains fields of disordered distribution of monomer units and of prolonged aggregates, regions of lamellae with small and big domain spacing, and transition region. Within the transition region, the lamellae with different spacing coexist: the lamellae with big domain spacing are on the top of the grafting layer and the lamellae with small domain spacing are close to the grafting surface.
View Article and Find Full Text PDFImpact of mixture composition on self-organization in concentrated solutions of stiff helical and flexible macromolecules was studied by means of molecular dynamics simulation. The macromolecules were composed of identical amphiphilic monomer units but a fraction f of macromolecules had stiff helical backbones and the remaining chains were flexible. In poor solvents the compacted flexible macromolecules coexist with bundles or filament clusters from few intertwined stiff helical macromolecules.
View Article and Find Full Text PDFThe self-assembly of amphiphilic macromolecules end-grafted to a plane surface is studied using mean-field theory and computer simulations. Chain backbones are built from hydrophobic groups, whereas side groups are hydrophilic. The brush is immersed in a solvent, which can be good or poor, but on average is not far from θ conditions.
View Article and Find Full Text PDFBy means of computer simulation, we studied macromolecules composed of N dumbbell amphiphilic monomer units with attractive pendant groups. In poor solvents, these macromolecules form spherical globules that are dense in the case of short chains (the gyration radius RG∼N(1/3)), or hollow inside and obey the RG∼N(1/2) law when the macromolecules are sufficiently long. Due to the specific intramolecular nanostructuring, the vesicle-like globules of long amphiphilic macromolecules posses some properties of fractal globules, by which they (i) could demonstrate the same scaling statistics for the entire macromolecule and for short subchains with m monomer units and (ii) possess a specific territorial structure.
View Article and Find Full Text PDFWe performed monomolecular observations on linear and circular giant DNAs (208 kbp) in an aqueous solution by the use of fluorescence microscopy. The results showed that the degree of conformational fluctuation in circular DNA was ca. 40% less than that in linear DNA, although the long-axis length of circular DNA was only 10% smaller than that of linear DNA.
View Article and Find Full Text PDFA coarse-grained model is used to study the conformational properties of semiflexible polymers with amphiphilic monomer units containing both hydrophilic and hydrophobic interaction sites. The hydrophobically driven conformational transitions are studied using molecular dynamics simulations for the chains of varying stiffness, as characterized by intrinsic Kuhn segment lengths that vary over a decade. It is shown that the energy of hydrophobic attraction required for the realization of the coil-to-globule transition increases with increasing chain stiffness.
View Article and Find Full Text PDF"Swiss-cheese" polyelectrolyte gels (i.e., gels containing a regular set of closed spherical pores) are considered as a suitable system for modeling of a medium with extremely inhomogeneous distribution of charged species.
View Article and Find Full Text PDF