The complex architecture of adult brain derives from tightly regulated migration and differentiation of precursor cells generated during embryonic neurogenesis. Changes at transcriptional level of genes that regulate migration and differentiation may lead to neurodevelopmental disorders. Androgen receptor (AR) is a transcription factor that is already expressed during early embryonic days.
View Article and Find Full Text PDFBackground Sleep evaluation is increasingly being used as prognostic tool in patients with disorders of consciousness, but, surprisingly, the role of Period3 (Per3) gene polymorphism has never been evaluated. Objective The aim of this study was to investigate the contribution of Per3 genotype on sleep quantity and consciousness recovery level in patients with disorders of consciousness (DOC). Methods In this observational study, we evaluated 71 patients with DOC classified as vegetative state/unresponsive wakefulness syndrome or minimally conscious state.
View Article and Find Full Text PDFSpinal and bulbar muscular atrophy (SBMA) or Kennedy's disease is an X-linked CAG/polyglutamine expansion motoneuron disease, in which an elongated polyglutamine tract (polyQ) in the N-terminal androgen receptor (ARpolyQ) confers toxicity to this protein. Typical markers of SBMA disease are ARpolyQ intranuclear inclusions. These are generated after the ARpolyQ binds to its endogenous ligands, which promotes AR release from chaperones, activation and nuclear translocation, but also cell toxicity.
View Article and Find Full Text PDFIntroduction: Human adipose-derived stromal cells (hASCs), due to their relative feasibility of isolation and ability to secrete large amounts of angiogenic factors, are being evaluated for regenerative medicine. However, their limited culture life span may represent an obstacle for both preclinical investigation and therapeutic use. To overcome this problem, hASCs immortalization was performed in order to obtain cells with in vitro prolonged life span but still maintain their mesenchymal marker expression and ability to secrete angiogenic factors.
View Article and Find Full Text PDFIntroduction: Silk fibroin (SF) scaffolds have been shown to be a suitable substrate for tissue engineering and to improve tissue regeneration when cellularized with mesenchymal stromal cells (MSCs). We here demonstrate, for the first time, that electrospun nanofibrous SF patches cellularized with human adipose-derived MSCs (Ad-MSCs-SF), or decellularized (D-Ad-MSCs-SF), are effective in the treatment of skin wounds, improving skin regeneration in db/db diabetic mice.
Methods: The conformational and structural analyses of SF and D-Ad-MSCs-SF patches were performed by scanning electron microscopy, confocal microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry.
Neural stem cells (NSCs) are controlled by diffusible factors. The transcription factor Sox2 is expressed by NSCs and Sox2 mutations in humans cause defects in the brain and, in particular, in the hippocampus. We deleted Sox2 in the mouse embryonic brain.
View Article and Find Full Text PDFA gradual transition from oocyte-derived mRNA and proteins to full embryonic transcription characterises early embryonic development. Messenger RNAs and proteins of maternal origin are accumulated into the oocyte throughout its growth inthe ovary. Upon fertilisation, sev eral mechanisms ar e activated that controlthe appropriate use of such material and prepare for the synthesis of new products.
View Article and Find Full Text PDFEmbryonic stem cells (ESCs) hold great promise for therapeutic use and represent a unique tool for investigating the process of self-renewal and differentiation. The properties that make ESCs unique are their capacity of unlimited self-renewal coupled with the property of re-entering the developmental process if returned inside a blastocyst. Such plasticity enable ESCs to form all embryonic tissues including germ cells.
View Article and Find Full Text PDF