The dynamic mechanism of cell uptake and genomic integration of exogenous linear DNA still has to be completely clarified, especially within each phase of the cell cycle. We present a study of integration events of double-stranded linear DNA molecules harboring at their ends sequence homologies to the host's genome, all throughout the cell cycle of the model organism , comparing the efficiency of chromosomal integration of two types of DNA cassettes tailored for site-specific integration and bridge-induced translocation. Transformability increases in S phase regardless of the sequence homologies, while the efficiency of chromosomal integration during a specific cycle phase depends upon the genomic targets.
View Article and Find Full Text PDFWe describe the 'Crescendo Mouse', a human V transgenic platform combining an engineered heavy chain locus with diverse human heavy chain V, D and J genes, a modified mouse Cγ1 gene and complete 3' regulatory region, in a triple knock-out (TKO) mouse background devoid of endogenous immunoglobulin expression. The addition of the engineered heavy chain locus to the TKO mouse restored B cell development, giving rise to functional B cells that responded to immunization with a diverse response that comprised entirely 'heavy chain only' antibodies. Heavy chain variable (V) domain libraries were rapidly mined using phage display technology, yielding diverse high-affinity human V that had undergone somatic hypermutation, lacked aggregation and showed enhanced expression in E.
View Article and Find Full Text PDFIn mammalian organisms liquid tumors such as acute myeloid leukemia (AML) are related to spontaneous chromosomal translocations ensuing in gene fusions. We previously developed a system named bridge-induced translocation (BIT) that allows linking together two different chromosomes exploiting the strong endogenous homologous recombination system of the yeast . The BIT system generates a heterogeneous population of cells with different aneuploidies and severe aberrant phenotypes reminiscent of a cancerogenic transformation.
View Article and Find Full Text PDFWe have constructed two plasmids that can be used for cloning as templates for PCR- -based gene disruption, mutagenesis and the construction of DNA chromosome translocation cassettes. To our knowledge, these plasmids are the first vectors that confer resistance to ampicillin, kanamycin and hygromycin B in bacteria, and to geneticin (G418) and hygromycin B in simultaneously. The option of simultaneously using up to three resistance markers provides a highly stringent control of recombinant selection and the almost complete elimination of background resistance, while unique restriction sites allow easy cloning of chosen genetic material.
View Article and Find Full Text PDFAdaptation by natural selection might improve the fitness of an organism and its probability to survive in unfavorable environmental conditions. Decoding the genetic basis of adaptive evolution is one of the great challenges to deal with. To this purpose, Saccharomyces cerevisiae has been largely investigated because of its short division time, excellent aneuploidy tolerance and the availability of the complete sequence of its genome with a thorough genome database.
View Article and Find Full Text PDFChromosome translocation is a major genomic event for a cell, affecting almost every of its life aspects ranging from metabolism, organelle maintenance and homeostasis to gene maintenance and expression. By using the bridge-induced translocation system, we defined the effects of induced chromosome translocation on the chronological life span (CLS) of yeast with particular interest to the oxidative stress condition. The results demonstrate that every translocant strain has a different CLS, but all have a high increase in reactive oxygen species and in lipid peroxides levels at the end of the life span.
View Article and Find Full Text PDFIn this review we will focus on chromosomal translocations (either spontaneous or induced) in budding yeast. Indeed, very few organisms tolerate so well aneuploidy like , allowing in depth studies on chromosomal numerical aberrations. Many wild type strains naturally develop chromosomal rearrangements while adapting to different environmental conditions.
View Article and Find Full Text PDFChromosome translocations are often observed in cancer cells, being in some cases the cause of neoplastic transformation while in others the results of it. In previous works, we reproduced this major genomic rearrangement by bridge-induced chromosome translocation (BIT) technology in the model eukaryote Saccharomyces cerevisiae and reported that it affects DNA replication, cell cycle, karyogamy, and cytokinesis while it produces genetic instability. In the present work, we further discovered that this event can lead to increased resistance to anticancer chemicals like Doxorubicin and Latrunculin A via an endocytic actin network deregulation triggered by over-expression of the PRK1 serine/threonine protein kinase gene.
View Article and Find Full Text PDFWhile in mammalian cells the genetic determinism of chromosomal translocation remains unclear, the yeast Saccharomyces cerevisiae has become an ideal model system to generate ad hoc translocations and analyze their cellular and molecular outcome. A linear DNA cassette carrying a selectable marker flanked by perfect homologies to two chromosomes triggers a bridge-induced translocation (BIT) in budding yeast, with variable efficiency. A postulated two-step process to produce BIT translocants is based on the cooperation between the Homologous Recombination System (HRS) and Break-Induced Replication (BIR); however, a clear indication of the molecular factors underlying the genetic mechanism is still missing.
View Article and Find Full Text PDFYeast has been established as an efficient model system to study biological principles underpinning human health. In this review we focus on yeast models covering two aspects of cancer formation and progression (i) the activity of pyruvate kinase (PK), which recapitulates metabolic features of cancer cells, including the Warburg effect, and (ii) chromosome bridge-induced translocation (BIT) mimiking genome instability in cancer. Saccharomyces cerevisiae is an excellent model to study cancer cell metabolism, as exponentially growing yeast cells exhibit many metabolic similarities with rapidly proliferating cancer cells.
View Article and Find Full Text PDFLoss of heterozygosity (LOH) of tumor suppressor genes in somatic cells is a major process leading to several types of cancer; however, its underlying molecular mechanism is still poorly understood. In the present work, we demonstrate that a linear DNA molecule bridging two homologous chromosomes in diploid yeast cells via homologous recombination produce LOH-generating regions of hemizygosity by deletion. The result is a near-reciprocal translocation mutant that is characterized by slight cell cycle defects and increased expression of the multidrug-resistant gene VMR1.
View Article and Find Full Text PDFSaccharomyces cerevisiae strains harboring a nonreciprocal, bridge-induced translocation (BIT) between chromosomes VIII and XV exhibited an abnormal phenotype comprising elongated buds and multibudded, unevenly nucleated pseudohyphae. In these cells, we found evidence of molecular effects elicited by the translocation event and specific for its particular genomic location. Expression of genes flanking both translocation breakpoints increased up to five times, correlating with an increased RNA polymerase II binding to their promoters and with their histone acetylation pattern.
View Article and Find Full Text PDFExpression of yeast RuvB-like gene analogues of bacterial RuvB is self-regulated, as episomal overexpression of RVB1 and RVB2 decreases the expression of their chromosomal copies by 85%. Heterozygosity for either gene correlates with lower double-strand break repair of inverted-repeat DNA and decreased survival after UV irradiation, suggesting their haploinsufficiency, while overexpression of the bacterial RuvAB complex improves UV survival in yeast. Rvb2p preferentially binds artificial DNA Holiday junctions like the bacterial RuvAB complex, whereas Rvb1p binds to duplex or cruciform DNA.
View Article and Find Full Text PDFLeishmania species cause a spectrum of human diseases in tropical and subtropical regions of the world. We have sequenced the 36 chromosomes of the 32.8-megabase haploid genome of Leishmania major (Friedlin strain) and predict 911 RNA genes, 39 pseudogenes, and 8272 protein-coding genes, of which 36% can be ascribed a putative function.
View Article and Find Full Text PDFSeveral experimental in vivo systems exist that generate reciprocal translocations between engineered chromosomal loci of yeast or Drosophila, but not without previous genome modifications. Here we report the successful induction of chromosome translocations in unmodified yeast cells via targeted DNA integration of the KAN(R) selectable marker flanked by sequences homologous to two chromosomal loci randomly chosen on the genome. Using this bridge-induced translocation system, 2% of the integrants showed targeted translocations between chromosomes V-VIII and VIII-XV in two wild-type Saccharomyces cerevisiae strains.
View Article and Find Full Text PDFThe entire genomic DNA sequence of the Gram-positive bacterium Bacillus subtilis reported in the SubtiList database has been subjected in this work to a complete bioinformatic analysis of the potential formation of secondary DNA structures such as hairpins and bending. The most significant of these structures have been mapped with respect to their genomic location and compared to those structures already known to have a physiological role, such as the rho-independent transcription terminators. The distribution of these structures along the bacterial chromosome shows two major features: (i).
View Article and Find Full Text PDFA comparison of the selective fitness of four 2-microm-based shuttle-plasmids carrying the yeast genes HIS3, LEU2, TRP1, and URA3 was performed. The effect of each marker on long-term growth rate and plasmid maintenance was measured. In selective medium, the LEU2 and URA3 plasmids were maintained at the lowest and the highest levels, respectively, while the HIS3 and TRP1 plasmids were maintained at an intermediate level.
View Article and Find Full Text PDFA 15 kb DNA fragment from the Bacillus subtilis chromosome between citB and ppsC has been sequenced, and new ORFs encoding putative enzymes involved in lipopolypeptide synthesis, which complete a partial operon previously reported, and a new set of enzymes responsible for lipid metabolism have been identified. From the analysis of DNA sequence homology of the fragment it was deduced that these new peptide synthetase genes are part of an operon for the biosynthesis of the fungicide fengycin.
View Article and Find Full Text PDF