Microelectromechanical system-based microphones demand high ingress protection levels with regard to their use in harsh environment. Here, we develop environmental protective components comprising polyimide nanofibers combined onto polyether ether ketone fabric meshes and subsequently appraise their impact on the electroacoustic properties of high signal-to-noise-ratio microelectromechanical system-based microphones via industry-standard characterizations and theoretical simulations. Being placed directly on top of the microphone sound port, the nanofiber mesh die-cut parts with an inner diameter of 1.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
April 2022
Atmospheric pollutants, such as NO, SO, and particulate matter, together with water percolation inside the stone pores, represent the main causes of cultural heritage decay. In order to avoid these undesired phenomena, the application of protective coatings represents a reliable solution. In this context, the present study focused on the synthesis of low-fluorine content methacrylic-based (MMA) polymeric resins characterized by seven F atoms (namely F7 monomer) in the lateral chains.
View Article and Find Full Text PDFCinnamaldehyde is a natural product with antibacterial, antifungal, and anti-inflammatory properties, poorly stable in environmental conditions. Systems for the controlled release of cinnamaldehyde are of great interest to the food and pharmaceutical industries. Here, a new oxide-based construct for the release of cinnamaldehyde catalyzed by acidic pH was obtained by a facile grafting method based on amino-silane linkers and imine chemistry.
View Article and Find Full Text PDFDespite the poor photochemical stability of capsules walls, polyacrylate is one of the most successful polymers for microencapsulation. To improve polyacrylate performance, the combined use of different acrylate-based polymers could be exploited. Herein butyl methacrylate (BUMA)-based lattices were obtained via free radical polymerization in water by adding (i) methacrylic acid (MA)/methyl methacrylate (MMA) and (ii) methacrylamide (MAC) respectively, as an aqueous phase in Pickering emulsions, thanks to both the excellent polymer shells' stability and the high encapsulation efficiency.
View Article and Find Full Text PDFPoly(3,4-ethylenedioxythiophene) (PEDOT) plays a key role in the field of electrically conducting materials, despite its poor solubility and processability. Various molecules and polymers carrying sulfonic groups can be used to enhance PEDOT's electrical conductivity. Among all, sulfonated polyarylether sulfone (SPAES), prepared via homogenous synthesis with controlled degree of sulfonation (DS), is a very promising PEDOT doping agent.
View Article and Find Full Text PDFPolyamide 6 (PA6) suffers from fast degradation in humid conditions due to hydrolysis of amide bonds, which limits its durability. The addition of nanotubular fillers represents a viable strategy for overcoming this issue, although the additive/polymer interface at high filler content can become privileged site for moisture accumulation. As a cost-effective and versatile material, halloysite nanotubes (HNT) were investigated to prepare PA6 nanocomposites with very low loadings (1-45% w/w).
View Article and Find Full Text PDFIn this work, new co- and ter-polymers of methyl methacrylate (MMA), ethyl methacrylate (EMA), and -butyl methacrylate (nBuMA), containing just 1% mol × mol of a fluorinated co-monomer, 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-octyl methacrylate (POMA), were synthesized. After an UV accelerated aging test, the photo-chemical stability of the polymers prepared was determined by H NMR and FT-IR spectroscopy, size exclusion chromatography, differential scanning calorimetry and wettability measurements. The polymers were applied to Botticino tiles to achieve better performances in terms of water repellency and consequently deterioration resistance.
View Article and Find Full Text PDFMicroplastic (μPs) contamination represents a dramatic environmental problem threatening both aquatic and terrestrial organisms. Although several studies have highlighted the presence of μPs in aquatic environments, the information regarding their toxicity towards organisms is still scant. Moreover, most of the ecotoxicological studies of μPs have focused on marine organisms, largely neglecting the effects on freshwater species.
View Article and Find Full Text PDFDespite the poor solubility in organic solvents, poly (3,4-ethylenedioxythiophene) (PEDOT) is one of the most successful conducting polymers. To improve PEDOT conductivity, the dopants commonly used are molecules/polymers carrying sulfonic functionalities. In addition to these species, sulfonated polyarylethersulfone (SPAES), obtained via homogeneous synthesis with different degrees of sulfonation (DS), can be used thanks to both the tight control over the DS and the charge separation present in SPAES structure.
View Article and Find Full Text PDFThe recombinant catalase-peroxidase HPI from was used as an alternative enzyme in polymerization reactions for the production of (-) epicatechin oligomers and their biological activity was characterized. The enzyme was prepared in two forms: a purified and an immobilized form. Both were tested for their activity in oxidative polymerization reactions, and their stability and reusability were assessed.
View Article and Find Full Text PDF