Climate change will pose a challenge for the winemaking sector worldwide, bringing progressively drier and warmer conditions and increasing the frequency and intensity of weather extremes. The short-term adaptation strategy of applying biostimulants through foliar application serves as a crucial measure in mitigating the detrimental effects of environmental stresses on grapevine yield and berry quality. The aim of this study was to evaluate the effect of foliar application of a seaweed-based biostimulant (.
View Article and Find Full Text PDFAmong the main challenges in current viticulture, there is the increasing demand for sustainability in the protection from fungal diseases, such as downy mildew (DM) and powdery mildew (PM). Breeding disease-resistant grapevine varieties is a key strategy for better managing fungicide inputs. This study explores the diversity of grapevine germplasm (cultivated and wild) from Caucasus and neighboring areas to identify genotypes resistant to DM and PM, based on 13 Simple Sequence Repeat (SSR) loci and phenotypical (artificial pathogen inoculation) analysis, and to identify loci associated with DM and PM resistance, Genome-Wide Association Analysis (GWAS) on Single Nucleotide Polymorphism (SNP) profiles.
View Article and Find Full Text PDFGrapevines worldwide are grafted onto spp. rootstocks in order to improve their tolerance to biotic and abiotic stresses. Thus, the response of vines to drought is the result of the interaction between the scion variety and the rootstock genotype.
View Article and Find Full Text PDFDowny mildew, caused by the obligate parasite , is one of the most important threats to viticulture. The exploitation of resistant and susceptibility traits of grapevine is one of the most promising ways to increase the sustainability of disease management. Nitrogen (N) fertilization is known for influencing disease severity in the open field, but no information is available on its effect on plant-pathogen interaction.
View Article and Find Full Text PDFThe effects of global warming on plants are not limited to the exacerbation of summer stresses; they could also induce dormancy dysfunctions. In January 2020, a bud break was observed in an old poly-varietal vineyard. Meteorological data elaboration of the 1951-2020 period confirmed the general climatic warming of the area and highlighted the particular high temperatures of the last winter.
View Article and Find Full Text PDFDowny mildew, caused by the oomycete , is one of the diseases causing the most severe economic losses to grapevine () production. To date, the application of fungicides is the most efficient method to control the pathogen and the implementation of novel and sustainable disease control methods is a major challenge. RNA interference (RNAi) represents a novel biotechnological tool with a great potential for controlling fungal pathogens.
View Article and Find Full Text PDFGrapevine () is one of the most widely cultivated plant species of agricultural interest, and is extensively appreciated for its fruits and the wines made from its fruits. Considering the high socio-economic impact of the wine sector all over the world, in recent years, there has been an increase in work aiming to investigate the biodiversity of grapevine germplasm available for breeding programs. Various studies have shed light on the genetic diversity characterizing the germplasm from the cradle of domestication in Georgia (South Caucasus).
View Article and Find Full Text PDFThe discovery of new mechanisms of resistance and natural bioactive molecules could be two of the possible ways to reduce fungicide use in vineyard and assure an acceptable and sustainable protection against Plasmopara viticola, the grapevine downy mildew agent. Emission of volatile organic compounds (VOCs), such as terpenes, norisoprenoids, alcohols and aldehydes, is frequently induced in plants in response to attack by pathogens, such as P. viticola, that is known to cause a VOCs increment in cultivars harboring American resistance traits.
View Article and Find Full Text PDFIn all land plants, the outer surface of aerial parts is covered by the cuticle, a complex lipid layer that constitutes a barrier against damage caused by environmental factors and provides protection against nonstomatal water loss. We show in this study that both cuticle deposition and cuticle-dependent leaf permeability during the juvenile phase of plant development are controlled by the maize () transcription factor ZmFUSED LEAVES 1 (FDL1)/MYB94. Biochemical analysis showed altered cutin and wax biosynthesis and deposition in mutant seedlings at the coleoptile stage.
View Article and Find Full Text PDF