Publications by authors named "Valentina Rafaela Herrera Millar"

Strategies to repair the meniscus have achieved limited success; thus, a cell-based therapy combined with an appropriate biocompatible scaffold could be an interesting alternative to overcome this issue. The aim of this project is to analyze different cell populations and a collagen gel scaffold as a potential source for meniscus tissue engineering applications. Dermal fibroblasts (DFs) and mesenchymal stem cells (MSCs) isolated from adipose tissue (ASCs) or bone marrow (BMSCs) were analyzed.

View Article and Find Full Text PDF

This study evaluates the morpho-functional modifications that characterize meniscal development from neonatal to adult dogs. Even if menisci are recognized as essential structures for the knee joint, poor information is available about their morphogenesis, in particular in dog models. Menisci from a group of Dobermann Pinchers aged 0, 10, 30 days, and 4 years (T0, T10, T30, adult, respectively) were analyzed by SEM, histochemistry (Safranin O and Picro Sirius Red Staining analyzed under a polarized light microscope), immunofluorescences (collagen type I and II), biomechanical (compression) and biochemical analyses (glycosaminoglycans, GAGs, and DNA content).

View Article and Find Full Text PDF

Musculoskeletal impairments, especially cartilage and meniscus lesions, are some of the major contributors to disabilities. Thus, novel tissue engineering strategies are being developed to overcome these issues. In this study, the aim was to investigate the biocompatibility, in vitro and in vivo, of a thermosensitive, injectable chitosan-based hydrogel loaded with three different primary mesenchymal stromal cells.

View Article and Find Full Text PDF

The availability and cost of fishmeal constitute a bottleneck in Atlantic salmon production expansion. Fishmeal is produced from wild fish species and constitutes the major feed ingredient in carnivorous species such as the Atlantic salmon. These natural stocks are at risk of depletion and it is therefore of major importance to find alternative protein sources that meet the nutritional requirements of the Atlantic salmon, without compromising the animals' health.

View Article and Find Full Text PDF

The success of cell-based approaches for the treatment of cartilage or fibro-cartilaginous tissue defects requires an optimal cell source with chondrogenic differentiation ability that maintains its differentiated properties and stability following implantation. For this purpose, the aim of this study was to evaluate the use of endostatin (COL18A1), an anti-angiogenic factor, which is physiologically involved in cell differentiation during meniscus development. Swine neonatal meniscal cells not yet subjected to mechanical stimuli were extracted, cultured in fibrin hydrogel scaffolds, and treated at two different time points (T1 = 9 days and T2 = 21 days) with different concentrations of COL18A1 (10 ng/mL; 100 ng/mL; 200 ng/mL).

View Article and Find Full Text PDF

The analysis of the morphological, structural, biochemical, and mechanical changes of the Extracellular Matrix (ECM), which occur during meniscus development, represents the goal of the present study. Medial fully developed menisci (FD, 9-month-old pigs), partially developed menisci (PD, 1-month-old piglets), and not developed menisci (ND, from stillbirths) were collected. Cellularity and glycosaminoglycans (GAGs) deposition were evaluated by ELISA, while Collagen 1 and aggrecan were investigated by immunohistochemistry and Western blot analyses in order to be compared to the biomechanical properties of traction and compression tensile forces, respectively.

View Article and Find Full Text PDF

Menisci play an essential role in shock absorption, joint stability, load resistance and its transmission thanks to their conformation. Adult menisci can be divided in three zones based on the vascularization: an avascular inner zone with no blood supply, a fully vascularized outer zone, and an intermediate zone. This organization, in addition to the incomplete knowledge about meniscal biology, composition, and gene expression, makes meniscal regeneration still one of the major challenges both in orthopedics and in tissue engineering.

View Article and Find Full Text PDF

The meniscus possesses low self-healing properties. A perfect regenerative technique for this tissue has not yet been developed. This work aims to evaluate the role of hypoxia in meniscal development in vitro.

View Article and Find Full Text PDF

Essential oils (EOs) and honeybee products (e.g., honey and propolis) are natural mixtures of different volatile compounds that are frequently used in traditional medicine and for pathogen eradication.

View Article and Find Full Text PDF