Obesity is a risk factor for pancreatic ductal adenocarcinoma (PDAC), a deadly disease with limited preventive strategies. Lifestyle interventions to decrease obesity represent a potential approach to prevent obesity-associated PDAC. In this study, we examined whether decreasing obesity through physical activity (PA) and/or dietary changes could decrease inflammation in humans and prevent obesity-associated PDAC in mice.
View Article and Find Full Text PDFObjectives: Chronic pancreatitis (CP) is an inflammatory disease affecting the absorption of fat-soluble nutrients. Signaling in pancreatic cells that lead to inflammation may be influenced by fatty acids (FAs) through diet and de novo lipogenesis. Here, we investigated the relationship between plasma FA composition in CP with heterogeneity of etiology and complications of CP.
View Article and Find Full Text PDFIntroduction: Chronic pancreatitis (CP) is a progressive fibroinflammatory disorder lacking therapies and biomarkers. Neutrophil gelatinase-associated lipocalin (NGAL) is a proinflammatory cytokine elevated during inflammation that binds fatty acids (FAs) such as linoleic acid. We hypothesized that systemic NGAL could serve as a biomarker for CP and, with FAs, provide insights into inflammatory and metabolic alterations.
View Article and Find Full Text PDFBackground & Aims: Obesity is a risk factor for pancreatic ductal adenocarcinoma (PDAC), a deadly disease with limited preventive strategies. Lifestyle interventions to decrease obesity might prevent obesity-associated PDAC. Here, we examined whether decreasing obesity by increased physical activity (PA) and/or dietary changes would decrease inflammation in humans and prevent PDAC in mice.
View Article and Find Full Text PDFObjectives: Chronic pancreatitis (CP) is an inflammatory disease that affects the absorption of nutrients like fats. Molecular signaling in pancreatic cells can be influenced by fatty acids (FAs) and changes in FA abundance could impact CP-associated complications. Here, we investigated FA abundance in CP compared to controls and explored how CP-associated complications and risk factors affect FA abundance.
View Article and Find Full Text PDFSiderophores are iron chelating molecules produced by nearly all organisms, most notably by bacteria, to efficiently sequester the limited iron that is available in the environment. Siderophores are an essential component of mammalian iron homeostasis and the ongoing interspecies competition for iron. Bacteria produce a broad repertoire of siderophores with a canonical role in iron chelation and the capacity to perform versatile functions such as interacting with other microbes and the host immune system.
View Article and Find Full Text PDFCachexia occurs in up to 80% of pancreatic ductal adenocarcinoma (PDAC) patients and is characterized by unintentional weight loss and tissue wasting. To understand the metabolic changes that occur in PDAC-associated cachexia, we compared the abundance of plasma fatty acids (FAs), measured by gas chromatography, of subjects with treatment-naïve metastatic PDAC with or without cachexia, defined as a loss of > 2% weight and evidence of sarcopenia (n = 43). The abundance of saturated, monounsaturated, and polyunsaturated FAs was not different between subjects with cachexia and those without.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is one of the deadliest types of cancer, and the increasing incidence of PDAC may be related to the prevalence of obesity. Physical activity (PA), a method known to mitigate obesity by increasing total energy expenditure, also modifies multiple cellular pathways associated with cancer hallmarks. Epidemiologic evidence has shown that PA can lower the risk of developing a variety of cancers, reduce some of the detrimental side effects of treatments, and improve patient's quality of life during cancer treatment.
View Article and Find Full Text PDFLipocalin-2 (LCN2) is a secreted glycoprotein linked to several physiological roles, including transporting hydrophobic ligands across cell membranes, modulating immune responses, maintaining iron homeostasis, and promoting epithelial cell differentiation. Although LNC2 is expressed at low levels in most human tissues, it is abundant in aggressive subtypes of cancer, including breast, pancreas, thyroid, ovarian, colon, and bile duct cancers. High levels of LCN2 have been associated with increased cell proliferation, angiogenesis, cell invasion, and metastasis.
View Article and Find Full Text PDFLipocalin-2 (LCN2) is a secreted molecule, expressed in various cell types, that is involved in the progression of numerous diseases and disorders. The biological functions and expression levels of LCN2 in diseases including pancreatic cancer, pancreatitis (acute and chronic), and diabetes mellitus, suggest the potential role of LCN2 as a biomarker and/or therapeutic target. However, findings on the role of LCN2 in pancreatic diseases have been contradictory.
View Article and Find Full Text PDF